Topology/Geometry Qualifying Examination January 2011

Answer all questions. Write your name and page number in the upper right corner of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

Notation. \mathbb{R} denotes the real numbers, and \mathbb{R}^n denotes Euclidean *n*-dimensional space. \mathbb{S}^{n-1} is the unit sphere centered at the origin in \mathbb{R}^n .

- **1.** Let X be a Hausdorff topological space.
 - (a) Show that every locally compact subspace of X is the intersection of two subsets of X, one of which is open and the other closed.
 - (b) Show that if X is locally compact, then X is completely regular.
- **2.** A continuous function $f : X \to Y$ is called *perfect* if f is closed and the set $f^{-1}(y)$ is compact for each $y \in Y$. Prove that if $f : X \to Y$ is a perfect mapping onto Y, then $f^{-1}(Z)$ is compact for each compact $Z \subset Y$.
- **3.** Let A be a connected subset of a connected space X, and $B \subset X A$ be an open and closed set in the topology of the subspace X A of the space X. Prove that $A \cup B$ is connected.
- **4.** If a collection \mathcal{F} of subsets of a space X is locally finite and \overline{A} is compact for each A in \mathcal{F} , then each $A \in \mathcal{F}$ intersects only a finite number of elements of \mathcal{F} .
- **5.** Let M^n be a smooth *n*-dimensional manifold.
 - (a) State the definition of a smooth n-dimensional manifold. Define the tangent bundle of M.
 - (b) M^n is *parallelizable* if there exist n vector fields on M which are independent at each point of M. Prove that $\mathbb{S}^{n-1} \times \mathbb{R}$ is parallelizable for all n.
- **6.** Let (X, ρ) be a metric space.
 - (a) Show that X is compact if and only if every sequence in X has a convergent subsequence.
 - (b) Assume that X is compact. Let $f : X \to X$ be an *isometry*; that is, $\rho(x, y) = \rho(f(x), f(y))$ for all $x, y \in X$. Prove that f is a mapping onto X.

- 7. Give an example of an immersion $f : \mathbb{R} \to \mathbb{R}^2$ that is not an embedding. (Full justification is required: prove that your example is an immersion, but not an embedding.)
- 8. Consider the smooth map $F : \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$F(x, y, z) = \left((x - y)^2, (x - y)(y - z), (y - z)^2 \right).$$

- (a) What is the maximum rank that F achieves?
- (b) At which points $(x, y, z) \in \mathbb{R}^3$ is the rank of F less than the maximum?
- **9.** Assume that all functions are maps of Euclidean spaces.
 - (a) State the Inverse Function Theorem.
 - (b) State the Implicit Function Theorem.
 - (c) Assume that the Inverse Function Theorem holds, and prove the Implicit Function Theorem.
- 10. Let T^2 denote the two-dimensional torus with the standard structure as a differentiable manifold.
 - (a) Prove T^2 admit a flat metric; that is, a metric with Gauss curvature identially zero.
 - (b) Use part (a) and the Gauss-Bonnet Theorem to complete the Euler characteristic of T^2 .
 - (c) Does T^2 admit a metric that is not flat with Gauss curvature $K \ge 0$? (Justify your answer.)
- 11. Prove Cartan's Lemma: Let M be a smooth manifold of dimension n. Fix $1 \le k \le n$. Let ω^i and ϕ_i be 1-forms on M. Suppose that the $\{\omega^1, \ldots, \omega^k\}$ are point-wise linearly independent, and that $0 = \sum_{i=1}^k \phi_i \wedge \omega^i$. Prove that there exist smooth functions $h_{ij} = h_{ji} : M \to \mathbb{R}$ such that for all $i = 1, \ldots, k, \phi_i = \sum_{j=1}^k h_{ij} \omega^j$.
- **12.** Prove that a Lie group admits a global framing.