Topology/Geometry Qualifying Exam

(January 2012)

Remark: In all solutions you must write a justification for your answers. Please start each problem in a new page.
Problem 1. Given $P \in \mathbb{R}^{2}$ let $B_{\epsilon}(P)$ and $S_{\epsilon}(P)$ denote, respectively, the open Euclidean ball and the circle of radius ϵ centered at P. Let $X=B_{1}(0) \cup S_{1}(0)$ denote the closed ball of radius 1 centered at the origin $0 \in \mathbb{R}^{2}$. Given $P \in S_{1}(0)$ and $0<\epsilon<1 / 2$, define

$$
N_{\epsilon}(P)=\{P\} \cup B_{\epsilon}((1-\epsilon) P),
$$

where $(1-\epsilon) P$ denotes the multiplication of the vector $P \in \mathbb{R}^{2}$ by the scalar $(1-\epsilon)$. Note that $B_{\epsilon}((1-\epsilon) P)$ is tangent to $S_{1}(0)$ at P and that $N_{\epsilon}(P)=\cup_{0<r<\epsilon} S_{r}((1-r) P)$. (See picture below.) Define

$$
\mathcal{B}=\left\{N_{\epsilon}(P) \mid P \in S_{1}(0), 0<\epsilon<1 / 2\right\} \cup\left\{B_{\rho}(Q) \mid Q \in B, 0<\rho<1-\|Q\|\right\}
$$

where $\|Q\|$ denotes the Euclidean norm, and observe that \mathcal{B} forms a basis for a topology on X.
a. Show that this topology is 1st countable and separable, but neither 2nd countable nor Lindelöf.
b. Describe the closure of $N_{\epsilon}(P)$ and prove that X is a regular space.
c. Fix $P \in S_{1}(0)$ and $0<\epsilon<1 / 2$. Define $f: X \rightarrow[0,1]$ by:

$$
f(x)= \begin{cases}1, & \text { if } x \in X-N_{\epsilon}(P) \\ 0, & \text { if } x=0 \\ r / \epsilon, & \text { if } x \in S_{r}(P)-\{P\} \text { and } 0<r<\epsilon\end{cases}
$$

Show that f is continuous.
d. Prove that X is a completely regular space.

Problem 2. Let X denote the following subspace of the Euclidean plane \mathbb{R}^{2} :

$$
X=\left\{(x, y) \left\lvert\, x y=\frac{1}{n}\right., \text { for some } n \in \mathbb{N}\right\} \cup \mathbb{Q} \times\{0\} \cup\{0\} \times \mathbb{Q}
$$

a. Is X locally-connected?
b. Describe the connected components and the quasicomponents of X.

Problem 3. Let X be a second countable, locally compact, Hausdorff space.
a. Show that the one-point compactification X_{+}of X is second countable.
b. Show that every subspace $A \subset X$ is paracompact.

Problem 4. Let $f: X \rightarrow Y$ be a function from a space X into a locally compact, Hausdorff space Y. Show that f is continuous if and only if the following holds: whenever \hat{Y} is a compact Hausdorff space containing Y as a subspace, then the graph of f is a closed subspace of $X \times \hat{Y}$.
Problem 5. Consider \mathbb{R}^{3} with the Euclidean metric. Let $S \subset \mathbb{R}^{3}$ be a smooth oriented surface and $C \subset S$ a regular, oriented curve. Let $\mathrm{SO}(3)$ be the set of oriented orthonormal framings (or bases) of \mathbb{R}^{3}. Construct a smooth moving frame $e=\left(e_{1}, e_{2}, e_{3}\right): C \rightarrow \mathrm{SO}(3)$ as follows: given $x \in C$, let $e_{1}(x) \in T_{x} C$ be the oriented unit tangent vector to C; let $e_{3}(x) \in N_{x} S$ be the oriented unit normal vector to S; set $e_{2}(x)=e_{3}(x) \times e_{1}(x) \in T_{x} S$.
a. Show that there exist 1 -forms $\alpha, \beta, \gamma \in \Omega^{1}(C)$ on C such that

$$
\mathrm{d} e_{1}=\alpha e_{2}+\beta e_{3}, \quad \mathrm{~d} e_{2}=-\alpha e_{1}+\gamma e_{3} \quad \text { and } \quad \mathrm{d} e_{3}=-\beta e_{1}-\gamma e_{2}
$$

b. Show that C is a geodesic if and only if $\alpha=0$.
c. Compute the curvature κ of C in terms of α, β, γ.
d. Let II denote the second fundamental form of S. Compute $\operatorname{II}\left(e_{1}, e_{1}\right)$ in terms of α, β, γ.

Problem 6. Let M be a smooth n-dimensional manifold. Let X_{1}, \ldots, X_{k} be point-wise linearly independent vector fields on M, and let $\omega^{1}, \ldots, \omega^{n-k}$ be point-wise linearly independent 1 -forms such that

$$
\operatorname{Ann}\left\{\omega^{1}, \ldots, \omega^{n-k}\right\}=\operatorname{span}_{\mathbb{C}^{\infty}(M)}\left\{X_{1}, \ldots, X_{k}\right\}
$$

where Ann denotes the annihilator in the dual space. Prove that $\left[X_{a}, X_{b}\right] \equiv 0$ modulo X_{1}, \ldots, X_{k}, for all $1 \leq a, b \leq k$, if and only if $\mathrm{d} \omega^{s} \equiv 0$ modulo $\omega^{1}, \ldots, \omega^{n-k}$ for all $1 \leq s \leq n-k$.
Problem 7. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $f(x, y, z)=(x-1)^{2}-y z$. For which $t \in \mathbb{R}$ is $f^{-1}(t)$ an embedded 2-dimensional submanifold of \mathbb{R}^{3} ?
Problem 8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function such that $f(x, y)=0$ for all (x, y) outside the unit disk, i.e., for all (x, y) with $x^{2}+y^{2} \geq 1$. Consider the surface in \mathbb{R}^{3} given by the graph of f. What can you say about the average Gauss curvature of the surface?
Problem 9. Consider the tangent bundle to the 3 -sphere. Is it a smooth manifold? If so, what is its dimension? Is it compact?
Problem 10. Either prove the projective plane $\mathbb{R}^{2} \mathbb{P}^{2}$ is not orientable, or find an orientation for it. (Hint: construct $\mathbb{R P}^{2}$ as the 2 -sphere quotiented by the antipodal map.)

