Topology Qualifying Examination

January 2013

Instructions. Answer all questions. Write your name and page number in the upper right corner of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

Notation. \mathbb{N} denotes the positive integers. \mathbb{R} denotes the real numbers. \mathbb{R}^{n} denotes Euclidean n-dimensional space.

1. Let X be a metric space. Given a cover $\left\{U_{\alpha}\right\}$ of X by subsets of X, a Lebesgue number for the cover is a number $\epsilon>0$ such that if $A \subset X$ and $\operatorname{diam}(A)<\epsilon$, then A is contained in at least one set U_{β} of the cover.
(a) Prove that every open cover of a compact metric space X has a Lebesgue number.
(b) Prove that if $f: X \rightarrow Y$ is a continuous map from a compact space X to a metric space Y, then f is uniformly continuous.
2. Let X and Y be topological spaces. Let $f: X \rightarrow Y$ be a quotient map. Define quotient map. Show that if Y is connected and $f^{-1}(y)$ is connected for all $y \in Y$, then X is connected.
3. Define paracompact space. Prove that if X is paracompact, then X is normal.
4. Let X and Y be topological spaces. Let $f: X \rightarrow Y$ be a surjective function satisfying the condition that $\operatorname{int}(f(A)) \subset f(\operatorname{int}(A))$ for any subset $A \subset X$. Show that f is continuous.
5. For every $S \subset \mathbb{N}$, let $X_{S}=\{0,1\}$ with the discrete topology, and let $X=\Pi_{S} X_{S}$ with the product topology. Let $f_{n}(S)$ be 0 if $n \in S$, and 1 if $n \notin S$. Prove that the sequence $\left\{f_{n}\right\}$ in X does not have a convergent subsequence.
6. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $F(x, y, z)=\left(x^{2}-y^{3}, x y,(z-1)^{4}\right)$. For which points $p=(x, y, z)$ is F a diffeomorphism in a neighborhood of p ?
7. Consider the surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}+y^{2}\right\}$. Compute the tangent space to S at $p=(1,0,1)$ and determine the geodesic going from p to $q=(0,0,0)$ as a parameterized curve.
8. Define the cotangent bundle of a differentiable manifold. (Hint: first define the cotangent space at a point.)
9. Describe all smooth surfaces in \mathbb{R}^{3} with coordinates (x, y, z) such that the pullback of the one-form $\theta:=d y-z d x$ is identically zero.
10. Let $r>0$ be a constant and consider the surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid r=x^{2}+y^{2}\right\}$. Compute the Gauss and mean curvature functions on S. What is the group of isometries of S ?
