Topology Qualifying Examination January 2013

Instructions. Answer all questions. Write your name and page number in the upper right corner of each page. Start each problem on a new sheet of paper, and use only one side of each sheet.

Notation. \mathbb{N} denotes the positive integers. \mathbb{R} denotes the real numbers. \mathbb{R}^n denotes Euclidean *n*-dimensional space.

- Let X be a metric space. Given a cover {U_α} of X by subsets of X, a Lebesgue number for the cover is a number ε > 0 such that if A ⊂ X and diam(A) < ε, then A is contained in at least one set U_β of the cover.
 - (a) Prove that every open cover of a compact metric space X has a Lebesgue number.
 - (b) Prove that if $f : X \to Y$ is a continuous map from a compact space X to a metric space Y, then f is uniformly continuous.
- **2.** Let X and Y be topological spaces. Let $f : X \to Y$ be a quotient map. Define *quotient map*. Show that if Y is connected and $f^{-1}(y)$ is connected for all $y \in Y$, then X is connected.
- **3.** Define *paracompact space*. Prove that if X is paracompact, then X is normal.
- **4.** Let X and Y be topological spaces. Let $f : X \to Y$ be a surjective function satisfying the condition that $int(f(A)) \subset f(int(A))$ for any subset $A \subset X$. Show that f is continuous.
- **5.** For every $S \subset \mathbb{N}$, let $X_S = \{0, 1\}$ with the discrete topology, and let $X = \prod_S X_S$ with the product topology. Let $f_n(S)$ be 0 if $n \in S$, and 1 if $n \notin S$. Prove that the sequence $\{f_n\}$ in X does not have a convergent subsequence.
- **6.** Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $F(x, y, z) = (x^2 y^3, xy, (z 1)^4)$. For which points p = (x, y, z) is F a diffeomorphism in a neighborhood of p?
- 7. Consider the surface $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = x^2 + y^2\}$. Compute the tangent space to S at p = (1, 0, 1) and determine the geodesic going from p to q = (0, 0, 0) as a parameterized curve.
- **8.** Define the cotangent bundle of a differentiable manifold. (Hint: first define the cotangent space at a point.)
- 9. Describe all smooth surfaces in \mathbb{R}^3 with coordinates (x, y, z) such that the pullback of the one-form $\theta := dy zdx$ is identically zero.

Copyright © 2013

10. Let r > 0 be a constant and consider the surface $S = \{(x, y, z) \in \mathbb{R}^3 \mid r = x^2 + y^2\}$. Compute the Gauss and mean curvature functions on S. What is the group of isometries of S?