INSTRUCTIONS

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

1. Let C be a subset of a topological space X.
(a) Prove that if C is connected, then the closure of C is connected.
(b) Prove or give a counter-example to the following statement: if C is connected, then the interior of C is connected.
2. Prove that a separable metric space (a metric space with a dense countable subset) is second countable.
3. Let \mathbb{R}_{ℓ} denote the real line \mathbb{R} with the lower limit topology i.e. the topology on \mathbb{R} with the basis consisting of all left-closed, right-open intervals $[a, b)$.
(a) Find the closure of the set (a, b) in \mathbb{R}_{ℓ};
(b) Prove that \mathbb{R}_{ℓ} is not locally compact space.
4. (a) Give the definition of a quotient map $q: X \rightarrow Y$ between two topological spaces X and Y;
(b) Let $q: X \rightarrow Y$ be an open quotient map. Show that the space Y is Hausdorff if and only if the set $A=\left\{\left(x_{1}, x_{2}\right) \in X \times X \mid q\left(x_{1}\right)=q\left(x_{2}\right)\right\}$ is closed in the product space $X \times X$.
5. Let X be a copy of real line \mathbb{R} and let $\phi: X \rightarrow \mathbb{R}$ be $\phi(x)=x^{5}$. Taking ϕ as a chart, this defines a smooth structure on X. Prove or disprove each of the following statements:
(a) X (with this smooth structure) is diffeomorphic to \mathbb{R}.
(b) ϕ together with the identity map comprise a smooth atlas.
6. (a) Give the definition of an involutive smooth distribution in terms of its smooth local sections.
(b) One says that a p-form ω annihilates a smooth distribution D if $\omega\left(X_{1}, \ldots, X_{p}\right)=$ 0 whenever $X_{1}, \ldots X_{p}$ are local sections of D. Based on the definition of the previous item prove that a smooth distribution D is involutive if an only if the following condition is satisfied: if η is any smooth 1 -form that annihilates D on an open subset $U \subset M$, then $d \eta$ annihilated D on U.
(c) Given vector fields $X_{1}=\frac{\partial}{\partial y}+x \frac{\partial}{\partial z}$ and $X_{2}=\frac{\partial}{\partial x}+y \frac{\partial}{\partial w}$ in \mathbb{R}^{4} with coordinates (x, y, z, w), can we find a two dimensional submanifold M of \mathbb{R}^{4} such that X_{1} and X_{2} are tangent to M at every point of M ? Prove your answer.
(d) With the same notations as in the previous item, can we find a two dimensional submanifold N such that X_{1} is tangent to N at every point of N ? Prove your answer.
7. (a) Give a definition of an embedded submanifold of a manifold N.
(b) Let $F: M \mapsto N$ be a smooth map between manifolds M and N. Give the definitions of a regular point and of a regular value of F.
(c) Recall that a matrix A with real entries is orthogonal if $A^{T} A=I$, where I is the identity matrix. Prove that the set $O(n)$ of all $n \times n$ orthogonal matrices is an embedded submanifold of the space $M(n, \mathbb{R})$ of all $n \times n$ matrices with real entries and find the dimension of this submanifold.
8. (a) Let \mathbb{R}^{2} have coordinates (u, v) and fix a constant $a>0$. The catenoid is the image of the mapping $f: \mathbb{R}^{2} \mapsto \mathbb{R}^{3}$ defined by $f(u, v)=(a \cosh v \cos u, a \cosh v \sin u, a v)$. Compute the mean curvature and the Gaussian curvature of the catenoid.
(b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function such that $f(x, y)=0$ for all (x, y) outside the unit disk, i.e., for all (x, y) with $x^{2}+y^{2} \geq 1$. Consider the surface S in \mathbb{R}^{3} given by the graph of f over the disk $x^{2}+y^{2} \leq 2$. What can you say about the integral of the Gaussian curvature over S ? Prove your answer.
