TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM JANUARY 2016

INSTRUCTIONS

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Problem 1. Show that a bijection $f : X \longrightarrow Y$ is a homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$ for every $A \subset X$.

Problem 2. Prove that the one-point compactification of the half-open interval [0,1) is homeomorphic to the closed interval [0,1].

Problem 3. a) Give the definition of a connected component of a topological space.

b) Let X be a topological space, and let $X' \subset X$. Show that the connected component of $x \in X'$ in the subspace X' is a subset of the connected component of x in X.

Problem 4. Prove that a metric space X is compact if and only if every continuous function $f: X \longrightarrow \mathbb{R}$ is bounded.

Problem 5. Let \mathbb{R}^3 have coordinates (x, y, z) and the standard Euclidean structure. Let $S \subset \mathbb{R}^3$ be the surface parametrized locally by x = t + s, $y = t^2 + 2ts$, $z = t^3 + 3st^2$, where s, t > 0. Using any method you please, determine the Gauss curvature function K(s, t).

Problem 6. Let M be a differentiable manifold, and let $x \in M$.

- (1) Define (without reference to the tangent space), the cotangent space of M at x, T_x^*M .
- (2) Define (without reference to the cotangent space), the tangent space of M at $x, T_x M$.
- (3) Show that, with the above definitions, $T_x M$ and $T_x^* M$ are dual vector spaces.

Problem 7. Consider the following Lie subgroup of $GL_3\mathbb{R}$:

$$G := \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{R} \right\}$$

Determine the Lie algebra of G as a subalgebra of $\mathfrak{gl}_3\mathbb{R}$.

Problem 8. On \mathbb{R}^3 with coordinates (x, y, z), let $\theta = dx + f(z)dy$, for some function f(z). State a necessary and sufficient condition on f(z) such that for each point of \mathbb{R}^3 there exists a surface S whose tangent plane is annihilated by θ , i.e, if v, w is a basis for T_pS , then $\theta_p(v) = 0$ and $\theta_p(w) = 0$.