INSTRUCTIONS

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.
- Please do not interpret any problem in a way that renders it trivial.

1. Consider the following two subspaces of \mathbb{R} with its usual topology:

$$
\begin{aligned}
& X=(0,1) \cup\{2\} \cup(3,4) \cup\{5\} \cup \cdots \cup(3 n, 3 n+1) \cup\{3 n+2\} \cup \ldots \\
& Y=(0,1] \cup\{2\} \cup(3,4) \cup\{5\} \cup \cdots \cup(3 n, 3 n+1) \cup\{3 n+2\} \cup \ldots
\end{aligned}
$$

(a) Provide two bijective continuous functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ (please provide a carefully written proof that the functions you defined are continuous).
(b) Prove that X and Y are not homeomorphic.
2. Let X be a topological space. A family \mathcal{F} of subsets of X is called locally finite if every point $x \in X$ has an open neighborhood U such that only finitely many members of \mathcal{F} have nonempty intersection with U.
Prove that if \mathcal{F} is a locally finite family of closed sets then the union $\bigcup_{C \in \mathcal{F}} C$ is closed.
3. Prove that every compact Hausdorff space is regular.
4. Let X and Y be topological spaces, Y a connected space, and $f: X \rightarrow Y$ a continuous surjective function such that $f^{-1}(y)$ is connected for every $y \in Y$.
(a) Show that, if f is a quotient map, then X is connected.
(b) Provide an example in which f is not a quotient map and X is not connected.
5. (a) Give the definition of a smooth n-dimensional manifold ("smooth" here means C^{∞}) and the definition of a smooth map between two manifolds;
(b) Formulate the Inverse Function Theorem (for a smooth map between manifolds of the same dimensions);
(c) Assume that $F: M \rightarrow N$ is a smooth $\operatorname{map}, \operatorname{dim} M \geq \operatorname{dim} N$, and $\operatorname{rank} d F(m)=\operatorname{dim} N$ for some point $m \in M$. Prove that there exists an open neighborhood V of the point $F(m)$ in N that belongs to the image of F.
6. Let I_{n} be the $n \times n$ identity matrix and J be the $2 n \times 2 n$ matrix defined by $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$. Let $\operatorname{Sp}_{2 n}(\mathbb{R})$ be the subset of $2 n \times 2 n$ matrices Q with real entries such that $Q^{T} J Q=J$.
(a) Prove that the set $\operatorname{Sp}_{2 n}(\mathbb{R})$ is an embedded submanifold of the space of all $2 n \times 2 n$ matrices with real entries and find the dimension of this submanifold.
(b) It is known that $\operatorname{Sp}_{2 n}(\mathbb{R})$ is a Lie subgroup of $\mathrm{GL}_{2 n}(\mathbb{R})$. Determine the Lie algebra of $\mathrm{S} p_{2 n}(\mathbb{R})$ as a subalgebra of $\mathfrak{g l} l_{2 n}(\mathrm{R})$, namely if $X=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is a $2 n \times 2 n$-matrix, where A, B, C, D are $n \times n$-matrices, give explicit relations on matrices A, B, C, D such that X belongs to the Lie algebra of $\operatorname{Sp}_{2 n}(\mathbb{R})$.
7. (a) Given a smooth map $F: M \rightarrow N$ between manifolds M and N and a differential p-form ω on a manifold N define the pull-back $F^{*} \omega$ of ω by F;
(b) Let $\left\{\omega_{i j}\right\}_{1 \leq i, j \leq k}$ be the set of k^{2} differential 1-forms on a manifold M. Let $E=M \times \mathbb{R}^{k}$ and $\left(y_{1}, \ldots y_{k}\right)$ be the standard coordinates in \mathbb{R}^{k}. Also let $\pi: E \rightarrow M$ be the projection onto the first factor. For every $1 \leq j \leq k$ define the following 1 -form α_{j} on E :

$$
\alpha_{j}=d y_{j}+\sum_{l=1}^{k} y_{l} \pi^{*} \omega_{j l}
$$

Consider the distribution H on E defined by the forms $\alpha_{1}, \ldots \alpha_{k}$, i.e. such that

$$
H(p)=\left\{X \in T_{p} E:\left.\alpha_{1}\right|_{p}(X)=\ldots=\left.\alpha_{k}\right|_{p}(X)=0\right\}
$$

for every $p \in E$. Prove that the distribution H is involutive if and only if

$$
d \omega_{i j}+\sum_{l=1}^{k} \omega_{i l} \wedge \omega_{l j}=0
$$

for all $1 \leq i, j \leq k$. (In your solution you can use the description of involutivity of the distributions H in terms of the ideal of forms, annihilating H.)
8. Let M be a 2-dimensional Riemannian manifold. Let $\left(X_{1}, X_{2}\right)$ be an orthonormal frame (with respect to the Riemannian metric) in an open set U of M and $\left(\theta^{1}, \theta^{2}\right)$ be the corresponding dual coframe.
(a) Prove that there exists the unique 1-form ω on U such that

$$
\begin{equation*}
d \theta^{1}=-\omega \wedge \theta^{2}, \quad d \theta^{2}=\omega \wedge \theta^{1} \tag{1}
\end{equation*}
$$

(b) Take another orthonormal frame $\left(\widetilde{X}_{1}, \widetilde{X}_{2}\right)$ on U, defining the same orientation on U as the frame $\left(X_{1}, X_{2}\right)$. Let $\left(\widetilde{\theta}^{1}, \widetilde{\theta}^{2}\right)$ be the corresponding dual coframe, and $\widetilde{\omega}$ be the 1 -form satisfying relation (1) with $\left(\theta^{1}, \theta^{2}\right)$ replaced by $\left(\widetilde{\theta}^{1}, \widetilde{\theta}^{2}\right)$. Prove that $d \widetilde{\omega}=d \omega$. What is the analogous formula between $d \omega$ and $d \widetilde{\omega}$ if $\left(\widetilde{X}_{1}, \widetilde{X}_{2}\right)$ and $\left(X_{1}, X_{2}\right)$ define the opposite orientations on U.
(c) Define the Gaussian curvature of the 2-dimensional Riemannian manifold M based on the constructions of the previous items.

