1. Suppose that X and Y are connected spaces, and $A \subset X$ and $B \subset Y$ are proper subsets. Prove that the space $(X \times Y) \setminus (A \times B)$ is connected.

2. Prove that none of the following spaces are homeomorphic to each other: \mathbb{R}^2, $S^1 \times \mathbb{R}$, S^2, $S^1 \times S^1$, \mathbb{R}^3, S^3.

3. Prove that any continuous map from the real projective plane to the 2-dimensional torus $S^1 \times S^1$ is null-homotopic.

4. Prove that if X is Hausdorff and Y is a retract of X, then Y is closed in X.

5. (a) Formulate the Implicit Function Theorem.
 (b) Assume that M is a smooth manifold and a group such that the group operation is a smooth map (from $M \times M$ to M). Prove that the operation of taking inverse is a smooth map (from M to itself).
 (c) For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by $M_a = \{(x,y) \in \mathbb{R}^2 : y^2 = x(x-1)(x-a)\}$. For which values of a is M_a an embedded submanifold of \mathbb{R}^2?

6. (a) Let $T^2 = S^1 \times S^1 \subset \mathbb{R}^4$ be the 2-torus, defined by $w^2 + x^2 = y^2 + z^2 = 1$, with the orientation determined by its product structure. Compute $\int_{T^2} wy \, dx \wedge dz$.
 (b) Let M be an oriented smooth compact n-dimensional manifold with boundary ∂M and suppose that ∂M has two connected components N_0 and N_1. Let $i_j : N_j \to M$ be the inclusion map for $j = 0, 1$. Suppose that α is a p-form with $i_0^*\alpha = 0$ and β is an $(n-p-1)$-form with $i_1^*\beta = 0$. Prove that in this case $\int_M \alpha \wedge \beta = (-1)^{p+1} \int_M \alpha \wedge d\beta$.
 (c) Let ω be a closed 1-form on $\mathbb{R}^2 \setminus \{0\}$ and $\alpha = -\frac{y}{x^2+y^2} \, dx + \frac{x}{x^2+y^2} \, dy$. Show that there exist a constant c and a smooth function $g : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ such that $\omega = c \alpha + dg$.

7. (a) Let $M = \mathbb{R}^4$ with coordinates (x_1, x_2, x_3, x_4). Let D be the distribution in \mathbb{R}^4 defined by the following two 1-forms: $\omega_1 = dx_1 - x_2 dx_4$, $\omega_2 = dx_2 - x_3 dx_4$. Is this distribution involutive? Prove your answer.
(b) Let M and N be 2-dimensional smooth manifolds. Let (α_1, α_2) be a coframe on M and (ω_1, ω_2) be a coframe on N such that there are constants k_1 and k_2 so that
\[
d\alpha_1 = k_1 \alpha_1 \wedge \alpha_2, \quad d\alpha_2 = k_2 \alpha_1 \wedge \alpha_2, \quad d\omega_1 = k_1 \omega_1 \wedge \omega_2, \quad d\omega_2 = k_2 \omega_1 \wedge \omega_2.
\]
Prove that for every $q \in M$ and $p \in N$ there exist a neighborhood U of q in M, a neighborhood V of p in N, and a diffeomorphism $F : U \to V$ such that $\alpha_1 = F^*\omega_1$, $\alpha_2 = F^*\omega_2$. in U.

Hint: Let $\pi : M \times N \to M$ and $p : M \times N \to N$ are canonical projections. Work with the distribution on $M \times N$ defined by 1-forms $\pi^*\alpha_1 - p^*\omega_1$ and $\pi^*\alpha_2 - p^*\omega_2$.

8. Set $N = (0, 1) \in S^1 \subset \mathbb{R}^2$ and $U = S^1 \setminus N$. Let (U, φ) be a smooth chart, where $\varphi : U \to \mathbb{R}$ is given by the stereographic projection $\varphi(x, y) = \frac{x}{1 - y}$. Let t be the standard Cartesian coordinate on \mathbb{R}.

(a) Assume that $X_1 = t^2 \frac{\partial}{\partial t}$ is the vector field on \mathbb{R} and Y_1 is the vector field on U such that Y_1 and X_1 are φ-related, i.e. $X_1 = \varphi_* Y_1$. Does Y_1 extend to a smooth vector field on S^1? Justify your answer.

(b) Assume that $X_2 = t^3 \frac{\partial}{\partial t}$ is the vector field on \mathbb{R} and Y_2 is the vector field on U such that Y_2 and X_2 are φ-related. Does Y_2 extend to a smooth vector field on S^1? Justify your answer.