TEXAS A\&M UNIVERSITY

TOPOLOGY/GEOMETRY QUALIFYING EXAM

- There are 8 problems. Work on all of them and prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

1. Suppose that X and Y are connected spaces, and $A \subset X$ and $B \subset Y$ are proper subsets. Prove that the space $(X \times Y) \backslash(A \times B)$ is connected.
2. Prove that none of the following spaces are homeomorphic to each other $\mathbb{R}^{2}, S^{1} \times \mathbb{R}, S^{2}, S^{1} \times S^{1}, \mathbb{R}^{3}, S^{3}$.
3. Prove that any continuous map from the real projective plane to the 2-dimensional torus $S^{1} \times S^{1}$ is null-homotopic.
4. Prove that if X is Hausdorff and Y is a retract of X, then Y is closed in X.
5. (a) Formulate the Implicit Function Theorem.
(b) Assume that M is a smooth manifold and a group such that the group operation is a smooth map (from $M \times M$ to M). Prove that the operation of taking inverse is a smooth map (from M to itself).
(c) For each $a \in \mathbb{R}$, let M_{a} be the subset of \mathbb{R}^{2} defined by $M_{a}=\left\{(x, y) \in \mathbb{R}^{2}: y^{2}=x(x-1)(x-a)\right\}$. For which values of a is M_{a} an embedded submanifold of \mathbb{R}^{2} ?
6. (a) Let $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1} \subset \mathbb{R}^{4}$ be the 2-torus, defined by $w^{2}+x^{2}=y^{2}+z^{2}=1$, with the orientation determined by its product structure. Compute $\int_{\mathbb{T}^{2}} w y d x \wedge d z$.
(b) Let M be an oriented smooth compact n-dimensional manifold with boundary ∂M and suppose that ∂M has two connected components N_{0} and N_{1}. Let $\imath_{j}: N_{j} \rightarrow M$ be the inclusion map for $j=0,1$. Suppose that α is a p-form with $\imath_{0}^{*} \alpha=0$ and β is an $(n-p-1)$-form with $\imath_{1}^{*} \beta=0$. Prove that in this case $\int_{M} d \alpha \wedge \beta=(-1)^{p+1} \int_{M} \alpha \wedge d \beta$.
(c) Let ω be a closed 1-form on $\mathbb{R}^{2} \backslash\{0\}$ and $\alpha=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$. Show that there exist a constant c and a smooth function $g: R^{2} \backslash\{0\} \mapsto \mathbb{R}$ such that $\omega=c \alpha+d g$.
7. (a) Let $M=\mathbb{R}^{4}$ with coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Let D be the distribution in \mathbb{R}^{4} defined by the following two 1-forms: $\omega_{1}=d x_{1}-x_{2} d x_{4}, \quad \omega_{2}=d x_{2}-x_{3} d x_{4}$. Is this distribution involutive? Prove your answer.
(b) Let M and N be 2-dimensional smooth manifolds. Let $\left(\alpha_{1}, \alpha_{2}\right)$ be a coframe on M and $\left(\omega_{1}, \omega_{2}\right)$ be a coframe on N such that there are constants k_{1} and k_{2} so that

$$
d \alpha_{1}=k_{1} \alpha_{1} \wedge \alpha_{2}, \quad d \alpha_{2}=k_{2} \alpha_{1} \wedge \alpha_{2}, \quad d \omega_{1}=k_{1} \omega_{1} \wedge \omega_{2}, \quad d \omega_{2}=k_{2} \omega_{1} \wedge \omega_{2} .
$$

Prove that for every $q \in M$ and $p \in N$ there exist a neighborhood U of q in M, a neighborhood V of p in N, and a diffeomorphism $F: U \rightarrow V$ such that $\alpha_{1}=F^{*} \omega_{1}, \quad \alpha_{2}=F^{*} \omega_{2}$. in U. Hint: Let $\pi: M \times N \rightarrow M$ and $p: M \times N \rightarrow N$ are canonical projections. Work with the distribution on $M \times N$ defined by 1 -forms $\pi^{*} \alpha_{1}-p^{*} \omega_{1}$ and $\pi^{*} \alpha_{2}-p^{*} \omega_{2}$.
8. Set $N=(0,1) \in \mathbb{S}^{1} \subset \mathbb{R}^{2}$ and $U=\mathbb{S}^{1} \backslash N$. Let (U, φ) be a smooth chart, where $\varphi: U \rightarrow \mathbb{R}$ is given by the stereographic projection $\varphi(x, y)=\frac{x}{1-y}$. Let t be the standard Cartesian coordinate on \mathbb{R}.
(a) Assume that $X_{1}=t^{2} \frac{\partial}{\partial t}$ is the vector field on \mathbb{R} and Y_{1} is the vector field on U such that Y_{1} and X_{1} are φ-related, i.e. $X_{1}=\varphi_{*} Y_{1}$. Does Y_{1} extend to a smooth vector field on \mathbb{S}^{1} ? Justify your answer.
(b) Assume that $X_{2}=t^{3} \frac{\partial}{\partial t}$ is the vector field on \mathbb{R} and Y_{2} is the vector field on U such that Y_{2} and X_{2} are φ-related. Does Y_{2} extend to a smooth vector field on \mathbb{S}^{1} ? Justify your answer.

