- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Q1. Let Y be a locally connected space and let $A \subset Y$ be an arbitrary subspace. Show that if the boundary ∂A of A is locally connected then its closure \bar{A} is also locally connected.
Q2. Let $A \subset X$ be a closed subspace of a normal space X and let $f: A \rightarrow S^{n}$ be a continuous map, where S^{n} is the unit sphere of dimension n. Show that there exists an open neighborhood $U \supset A$ of A in X over which f can be extended to a map $F: U \rightarrow S^{n}$.
Q3. Let $S^{1} \subset \mathbb{R}^{2}$ be the unit circle centered at $\mathbf{0}=(0,0)$ and let $\mathbf{1}=(1,0)$ be its canonical base point. Give the natural numbers \mathbb{N} the discrete topology and define the quotient space $X:=\left(S^{1} \times \mathbb{N}\right) /(\{\mathbf{1}\} \times \mathbb{N})$. Now, let $K:=\cup_{n \in \mathbb{N}} C_{n}$ be the subspace of \mathbb{R}^{2} obtained as the union of circles $C_{n}:=\left\{(x, y) \in \mathbb{R}^{2} \mid(x+1 / n)^{2}+y^{2}=1 / n^{2}\right\}$ centered at $(-1 / n, 0)$ and having radius $1 / n$, for all $n \in \mathbb{N}$.
a. Prove that X and K are metrizable spaces.
b. Exhibit a continuous bijection $f: X \rightarrow K$.
c. Are X and K homeomorphic? Explain your answer.

Q4. Let J be an uncountable set and let $X:=\mathcal{P}(J)$ denote its power set. Given finite (possibly empty) disjoint subsets $A, B \subset J$, define

$$
\mathcal{N}_{A, B}:=\{C \in X \mid A \cap C=\emptyset \text { and } B \subseteq C\}
$$

a. Show that the collection $\mathcal{B}:=\left\{\mathcal{N}_{A, B} \mid A, B \subset J\right.$ are finite, and $\left.A \cap B=\emptyset\right\}$ forms a basis for a topology on X.
b. Show that X is a compact Hausdorff space with this topology.
c. Let $\mathcal{K}:=\{C \subset J \mid C$ is at most countable $\}$. Show that \mathcal{K} is a dense and completely regular subspace of X.
d. Show that if $H \subset \mathcal{K}$ is a countable subset then $\bar{H} \subset \mathcal{K}$.

Q5. A map $p: X \rightarrow Y$ is called perfect if it is a continuous, closed and surjective map, such that $p^{-1}(\{y\})$ is compact for each $y \in Y$.
a. Let $p: X \rightarrow Y$ be a perfect map between Hausdorff spaces X and Y. Show that X is paracompact if and only if Y is paracompact.
b. Show that the product of a compact space and a paracompact space is paracompact.

Q6. a. Formulate the Implicit Function Theorem.
b. Let $P_{t}(x)=a_{n}(t) x^{n}+a_{n-1}(t) x^{n-1}+\ldots+a_{0}(t), \quad T \in R$ be a smooth family of polynomials over \mathbb{R}, i.e. all coefficients $a_{i}(t)$ are smooth in t. Assume that x_{0} is a simple (i.e., not repeated root) of the polynomial P_{0}.
(i) Prove that there exists $\varepsilon>0$ and smooth function $x:(-\varepsilon, \varepsilon) \mapsto \mathbb{R}$ such that $x(t)$ is a root of P_{t} for every $t \in(-\varepsilon, \varepsilon)$ and $x(0)=0$.
(ii) Is the statement of the previous item always true, if x_{0} is a root of multiplicity 2 of $P_{0}(x)$? Justify our answer.
Q7. a. Let V be a 4 -dimensional vector space. Is there a $\omega \in \Lambda^{2} V^{*}$ such that the restriction of ω to every 2-dimensional subspace $W \subset V$ is nonzero? Prove your answer.
b. Let M be an even dimensional manifold and ω be a closed nondegenerate differential 2 -form (nondegenerate means that for any $m \in M$ if $\left.i_{X} \omega\right|_{p}=0$ for some $X \in T_{m} M$, then $X=0$).
(i) Prove that for any smooth function h on M there is a unique vector field \vec{h} such that $i_{\overparen{h}} \omega=-d h$.
(ii) Prove that for any smooth function h on M we have that $L_{\vec{h}} \omega=0$ and $\left(e^{t \vec{h}}\right)^{*} \omega=\omega$, where $e^{t \vec{h}}$ denotes the local flow generated by \vec{h}.
Q8. a. Define what is an involutive distribution and an integral manifold of a distribution.
b. Prove that the existence of an integral manifold to a distribution D through any point implies that D is involutive.
c. In \mathbb{R}^{3}, set $X_{1}=x_{1}^{2} x_{2} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{3}}, \quad X_{2}=2 x_{1} \frac{\partial}{\partial x_{2}}$.
(i) Prove that for any point $p \in \mathbb{R}^{3}$ there are no neighborhood U and coordinate functions y_{1}, y_{2}, y_{3} on U such that $X_{1}=\frac{\partial}{\partial y_{1}}$ and $X_{2}=\frac{\partial}{\partial y_{2}}$.
(ii) Define the distribution $D=\operatorname{span}\left(X_{1}, X_{2}\right)$ on $M:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} \neq 0\right\}$. Prove that for any $p \in M$ there exist a neighborhood U, coordinate functions $\left(y^{1}, y^{2}, y^{3}\right)$ on U, and vector fields Y_{1} and Y_{2} on U so that $D=\operatorname{span}\left(Y_{1}, Y_{2}\right)$ and $Y_{i}=\frac{\partial}{\partial y_{i}}, i=1,2$.
(iii) Give an example of such vector fields Y_{1}, Y_{2} (in the original coordinates $\left(x_{1}, x_{2}, x_{3}\right)$).

Q9. Let X_{1}, X_{2} be a frame in \mathbb{R}^{2}, i.e. X_{1} and X_{2} are smooth vector fields and for every $\mathbf{x} \in \mathbb{R}^{2}$ the tuple $\left(X_{1}(\mathbf{x}), X_{2}(\mathbf{x})\right)$ form a basis of $T_{\mathbf{x}} \mathbb{R}^{2}$. Let $\left(\omega^{1}, \omega^{2}\right)$ be the dual coframe to (X_{1}, X_{2}), i.e. $\omega^{i}, i=1,2$, are 1 -forms such that for every $\mathbf{x} \in \mathbb{R}^{2}$ we have $\left.\omega^{i}\right|_{\mathbf{x}}\left(X_{j}(\mathbf{x})\right)=\delta_{i}^{j}$.
a. Prove that there exists the unique 1 -form ω_{2}^{1} such that

$$
d \omega^{1}=\omega_{2}^{1} \wedge \omega^{2}, \quad d \omega^{2}=\omega_{2}^{1} \wedge \omega^{1}
$$

The form ω_{2}^{1} is called the canonical connection form of the frame $\left(X_{1}, X_{2}\right)$.
b. Let ($\tilde{X}_{1}, \tilde{X}_{2}$) be another frame in R^{2} such that for a smooth function $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
\widetilde{X}_{1}=\cosh (\theta(\mathbf{x})) X_{1}+\sinh (\theta(\mathbf{x})) X_{2}, \quad \widetilde{X}_{2}=\sinh (\theta(\mathbf{x})) X_{1}+\cosh (\theta(\mathbf{x})) X_{2},
$$

where cosh and sinh are hyperbolic cosine and sine, and let $\widetilde{\omega}_{2}^{1}$ be the canonical connection form of the frame ($\widetilde{X}_{1}, \widetilde{X}_{2}$). Prove that $d \widetilde{\omega}_{2}^{1}=d \omega_{2}^{1}$.
c. Let K and \widetilde{K} are to functions on \mathbb{R}^{2} such that

$$
d \omega_{2}^{1}=K \omega^{1} \wedge \omega^{2}, \quad d \widetilde{\omega}_{2}^{1}=\widetilde{K} \widetilde{\omega}^{1} \wedge \widetilde{\omega}^{2} .
$$

Prove that $\widetilde{K} \equiv K$.
Q10. a. Find the Gaussian curvature of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ in \mathbb{R}^{3} at the vertices (i.e. at the points where two of the coordinates x, y, and z vanish).
b. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function such that $f(x, y)=0$ for all (x, y) outside the unit disk, i.e., for all (x, y) with $x^{2}+y^{2} \geq 1$. Consider the surface S in \mathbb{R}^{3} given by the graph of f over the disk $x^{2}+y^{2} \leq 2$. What can you say about the integral of the Gaussian curvature over S ? Prove your answer.
Hint: Use the Gauss-Bonnet theorem

