TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM January 2020

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.
- **Q1.** Let Y be a *locally connected space* and let $A \subset Y$ be an arbitrary subspace. Show that if the boundary ∂A of A is locally connected then its closure \overline{A} is also locally connected.
- **Q2.** Let $A \subset X$ be a closed subspace of a *normal* space X and let $f: A \to S^n$ be a continuous map, where S^n is the unit sphere of dimension n. Show that there exists an open neighborhood $U \supset A$ of A in X over which f can be extended to a map $F: U \to S^n$.
- **Q3.** Let $S^1 \subset \mathbb{R}^2$ be the unit circle centered at $\mathbf{0} = (0,0)$ and let $\mathbf{1} = (1,0)$ be its canonical base point. Give the natural numbers \mathbb{N} the discrete topology and define the quotient space $X := (S^1 \times \mathbb{N})/(\{\mathbf{1}\} \times \mathbb{N})$. Now, let $K := \bigcup_{n \in \mathbb{N}} C_n$ be the subspace of \mathbb{R}^2 obtained as the union of circles $C_n := \{(x, y) \in \mathbb{R}^2 \mid (x+1/n)^2 + y^2 = 1/n^2\}$ centered at (-1/n, 0) and having radius 1/n, for all $n \in \mathbb{N}$.
 - a. Prove that X and K are metrizable spaces.
 - b. Exhibit a continuous bijection $f: X \to K$.
 - c. Are X and K homeomorphic? Explain your answer.
- **Q4.** Let J be an uncountable set and let $X := \mathcal{P}(J)$ denote its power set. Given finite (possibly empty) disjoint subsets $A, B \subset J$, define

$$\mathcal{N}_{A,B} := \{ C \in X \mid A \cap C = \emptyset \text{ and } B \subseteq C \}.$$

- a. Show that the collection $\mathcal{B} := \{\mathcal{N}_{A,B} \mid A, B \subset J \text{ are finite, and } A \cap B = \emptyset\}$ forms a basis for a topology on X.
- b. Show that X is a **compact Hausdorff** space with this topology.
- c. Let $\mathcal{K} := \{C \subset J \mid C \text{ is at most countable}\}$. Show that \mathcal{K} is a *dense* and *completely regular* subspace of X.
- d. Show that if $H \subset \mathcal{K}$ is a countable subset then $\overline{H} \subset \mathcal{K}$.
- **Q5.** A map $p: X \to Y$ is called *perfect* if it is a continuous, closed and surjective map, such that $p^{-1}(\{y\})$ is compact for each $y \in Y$.
 - a. Let $p: X \to Y$ be a perfect map between Hausdorff spaces X and Y. Show that X is *paracompact* if and only if Y is paracompact.
 - b. Show that the product of a compact space and a paracompact space is paracompact.
- **Q6.** a. Formulate the Implicit Function Theorem.
 - b. Let $P_t(x) = a_n(t)x^n + a_{n-1}(t)x^{n-1} + \ldots + a_0(t)$, $T \in R$ be a smooth family of polynomials over \mathbb{R} , i.e. all coefficients $a_i(t)$ are smooth in t. Assume that x_0 is a simple (i.e., not repeated root) of the polynomial P_0 .
 - (i) Prove that there exists $\varepsilon > 0$ and smooth function $x : (-\varepsilon, \varepsilon) \mapsto \mathbb{R}$ such that x(t) is a root of P_t for every $t \in (-\varepsilon, \varepsilon)$ and x(0) = 0.

- (ii) Is the statement of the previous item always true, if x_0 is a root of multiplicity 2 of $P_0(x)$? Justify our answer.
- **Q7.** a. Let V be a 4-dimensional vector space. Is there a $\omega \in \bigwedge^2 V^*$ such that the restriction of ω to every 2-dimensional subspace $W \subset V$ is nonzero? Prove your answer.
 - b. Let M be an even dimensional manifold and ω be a closed nondegenerate differential 2-form (nondegenerate means that for any $m \in M$ if $i_X \omega|_p = 0$ for some $X \in T_m M$, then X = 0).
 - (i) Prove that for any smooth function h on M there is a unique vector field \vec{h} such that $i_{\vec{h}}\omega = -dh.$
 - (ii) Prove that for any smooth function h on M we have that $L_{\vec{h}}\omega = 0$ and $(e^{t\vec{h}})^*\omega = \omega$, where $e^{t\vec{h}}$ denotes the local flow generated by \vec{h} .
- **Q8.** a. Define what is an *involutive distribution* and *an integral manifold* of a distribution.
 - b. Prove that the *existence* of an integral manifold to a distribution D through any point implies that D is involutive.

 - c. In \mathbb{R}^3 , set $X_1 = x_1^2 x_2 \frac{\partial}{\partial x_2} x_1 \frac{\partial}{\partial x_3}$, $X_2 = 2x_1 \frac{\partial}{\partial x_2}$. (i) Prove that for any point $p \in \mathbb{R}^3$ there are no neighborhood U and coordinate functions y_1, y_2, y_3 on U such that $X_1 = \frac{\partial}{\partial y_1}$ and $X_2 = \frac{\partial}{\partial y_2}$.
 - (ii) Define the distribution $D = \operatorname{span}(X_1, X_2)$ on $M := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \neq 0\}$. Prove that for any $p \in M$ there exist a neighborhood U, coordinate functions (y^1, y^2, y^3) on U, and vector fields Y_1 and Y_2 on U so that $D = \operatorname{span}(Y_1, Y_2)$ and $Y_i = \frac{\partial}{\partial u_i}$, i = 1, 2.
 - (iii) Give an example of such vector fields Y_1, Y_2 (in the original coordinates (x_1, x_2, x_3)).
- **Q9.** Let X_1, X_2 be a frame in \mathbb{R}^2 , i.e. X_1 and X_2 are smooth vector fields and for every $\mathbf{x} \in \mathbb{R}^2$ the tuple $(X_1(\mathbf{x}), X_2(\mathbf{x}))$ form a basis of $T_{\mathbf{x}} \mathbb{R}^2$. Let (ω^1, ω^2) be the dual coframe to (X_1, X_2) , i.e. $\omega^i, i = 1, 2$, are 1-forms such that for every $\mathbf{x} \in \mathbb{R}^2$ we have $\omega^i|_{\mathbf{x}}(X_i(\mathbf{x})) = \delta_i^j$. a. Prove that there exists the unique 1-form ω_2^1 such that

$$d\omega^1 = \omega_2^1 \wedge \omega^2, \qquad d\omega^2 = \omega_2^1 \wedge \omega^2$$

The form ω_2^1 is called the *canonical connection form* of the frame (X_1, X_2) . b. Let $(\tilde{X}_1, \tilde{X}_2)$ be another frame in \mathbb{R}^2 such that for a smooth function $\theta : \mathbb{R}^2 \to \mathbb{R}$ with

Let
$$(X_1, X_2)$$
 be another frame in \mathbb{R}^2 such that for a smooth function $\theta : \mathbb{R}^2 \to \mathbb{R}$ wit

$$X_1 = \cosh(\theta(\mathbf{x}))X_1 + \sinh(\theta(\mathbf{x}))X_2, \quad X_2 = \sinh(\theta(\mathbf{x}))X_1 + \cosh(\theta(\mathbf{x}))X_2,$$

where cosh and sinh are hyperbolic cosine and sine, and let $\tilde{\omega}_2^1$ be the canonical connection form of the frame $(\widetilde{X}_1, \widetilde{X}_2)$. Prove that $d\widetilde{\omega}_2^1 = d\omega_2^1$.

c. Let K and \widetilde{K} are to functions on \mathbb{R}^2 such that

$$d\omega_2^1 = K\omega^1 \wedge \omega^2, \quad d\widetilde{\omega}_2^1 = \widetilde{K}\widetilde{\omega}^1 \wedge \widetilde{\omega}^2.$$

Prove that $\widetilde{K} \equiv K$.

- **Q10.** a. Find the Gaussian curvature of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ in \mathbb{R}^3 at the vertices (i.e. at the points where two of the coordinates x, y, and z vanish).
 - b. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function such that f(x,y) = 0 for all (x,y) outside the unit disk, i.e., for all (x, y) with $x^2 + y^2 \ge 1$. Consider the surface S in \mathbb{R}^3 given by the graph of f over the disk $x^2 + y^2 \leq 2$. What can you say about the integral of the Gaussian curvature over S? Prove your answer.

Hint: Use the Gauss-Bonnet theorem