TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM January 2022

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.
- **Q1.** Let (X, d) be a metric space. Suppose A is nonempty compact subset of X.
 - (a) Define the distance between of a point $x \in X$ and A to be

$$d(x,A) := \inf\{d(x,a) \mid a \in A\}.$$

For a given $x \in X$, prove that $d(x, A) = d(x, a_0)$ for some $a_0 \in A$.

(b) Define the diameter of A to be

$$\operatorname{diam}(A) := \sup\{d(x, y) \mid x, y \in A\}.$$

Show that diam(A) is finite and there exist $x_0, y_0 \in A$ such that

$$\operatorname{diam}(A) = d(x_0, y_0).$$

(c) Suppose B is a closed subset of X such that $A \cap B = \emptyset$. Define the distance between A and B to be

$$d(A,B) := \inf_{b \in B} d(b,A).$$

Prove that d(A, B) > 0.

Q2. Let $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ be the 2-dimensional torus. Compute the fundamental group of the connected sum of \mathbb{T}^2 with \mathbb{T}^2 (namely a closed oriented surface of genus two). Here the connected sum means the following. We remove a small disc from each of the tori and glue the resulting spaces along the common boundary (which is a circle) to obtain a new topological space called the connected sum (see the picture).

- **Q3.** Let \widetilde{X} and \widetilde{Y} be simply connected covering spaces of the path-connected, locally path-connected spaces X and Y respectively. Show that if X is homotopy equivalent to Y, then \widetilde{X} is homotopy equivalent to \widetilde{Y} .
- **Q4.** Let X be a Hausdorff space and A a compact subset of X. Let X/A be the quotient space obtained by identifying A to a single point. Show that X/A is Hausdorff (with respect to the quotient topology).
- **Q5.** Let X and Y be two topological spaces. Suppose Y is Hausdorff. Show that if $f, g: X \to Y$ are two continuous maps such that $f|_A = g|_A$ on some dense subset $A \subset X$, then f = g on X.

Q6. Inside the plane \mathbb{R}^2 , let *L* be the union of the positive *x*-axis and the positive *y*-axis (including the origin), i.e.,

$$L = \{ (x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy = 0 \}.$$

- (a) Prove that L is a topological manifold.
- (b) Prove that L is not a smooth submanifold of \mathbb{R}^2 . (Hint: L is a smooth submanifold if and only if locally L is defined by f(x, y) = 0 for some smooth function f with df nonvanishing.)
- **Q7.** Let *n* be a positive integer. Consider the set of orthogonal $n \times n$ matrices O(n) as a subset of the set of all $n \times n$ real matrices $\operatorname{Mat}_{n \times n}$ (which can be identified with the Euclidean space \mathbb{R}^{n^2}). Prove that O(n) is an embedded submanifold of $\operatorname{Mat}_{n \times n}$. (Hint: realize O(n) as the preimage of a smooth map from $\operatorname{Mat}_{n \times n}$ to another Euclidean space at a regular value and use the implicit function theorem.)
- **Q8.** Let M be a smooth manifold and α is a differential 1-form. Prove that for any two vector fields X, Y on M, one has

$$(d\alpha)(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y]).$$

Here $X(\alpha(Y))$ is the directional derivative of the function $\alpha(Y)$ in the direction X and [X, Y] is the Lie bracket.

- **Q9.** Let $S \subset \mathbb{R}^3$ be a regular, connected, compact, orientable surface (without boundary) which is not homeomorphic to a sphere. Let $S_+, S_0, S_- \subset S$ be the set of points on S where the Gauss curvature is positive, zero, and negative, respectively. Prove that the three sets are all nonempty.
- **Q10.** Let *M* be a smooth manifold and $\alpha_1, \ldots, \alpha_k$ are closed differential forms on *M*, i.e, $d\alpha_i = 0$ for all $i = 1, \ldots, k$.
 - (a) Prove that $\alpha_1 \wedge \cdots \wedge \alpha_k$ is closed.
 - (b) If one of $\alpha_1, \ldots, \alpha_k$ is an exact differential form, prove that $\alpha_1 \wedge \cdots \wedge \alpha_k$ is exact.