TEXAS A\&M UNIVERSITY
 TOPOLOGY/GEOMETRY QUALIFYING EXAM

January 2022

- There are 10 problems. Work on all of them and prove your assertions.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Q1. Let (X, d) be a metric space. Suppose A is nonempty compact subset of X.
(a) Define the distance between of a point $x \in X$ and A to be

$$
d(x, A):=\inf \{d(x, a) \mid a \in A\} .
$$

For a given $x \in X$, prove that $d(x, A)=d\left(x, a_{0}\right)$ for some $a_{0} \in A$.
(b) Define the diameter of A to be

$$
\operatorname{diam}(A):=\sup \{d(x, y) \mid x, y \in A\}
$$

Show that $\operatorname{diam}(A)$ is finite and there exist $x_{0}, y_{0} \in A$ such that

$$
\operatorname{diam}(A)=d\left(x_{0}, y_{0}\right) .
$$

(c) Suppose B is a closed subset of X such that $A \cap B=\emptyset$. Define the distance between A and B to be

$$
d(A, B):=\inf _{b \in B} d(b, A) .
$$

Prove that $d(A, B)>0$.
Q2. Let $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$ be the 2-dimensional torus. Compute the fundamental group of the connected sum of \mathbb{T}^{2} with \mathbb{T}^{2} (namely a closed oriented surface of genus two). Here the connected sum means the following. We remove a small disc from each of the tori and glue the resulting spaces along the common boundary (which is a circle) to obtain a new topological space called the connected sum (see the picture).

Q3. Let \widetilde{X} and \widetilde{Y} be simply connected covering spaces of the path-connected, locally path-connected spaces X and Y respectively. Show that if X is homotopy equivalent to Y, then \widetilde{X} is homotopy equivalent to \widetilde{Y}.
Q4. Let X be a Hausdorff space and A a compact subset of X. Let X / A be the quotient space obtained by identifying A to a single point. Show that X / A is Hausdorff (with respect to the quotient topology).
Q5. Let X and Y be two topological spaces. Suppose Y is Hausdorff. Show that if $f, g: X \rightarrow Y$ are two continuous maps such that $\left.f\right|_{A}=\left.g\right|_{A}$ on some dense subset $A \subset X$, then $f=g$ on X.

Q6. Inside the plane \mathbb{R}^{2}, let L be the union of the positive x-axis and the positive y-axis (including the origin), i.e.,

$$
L=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, x y=0\right\} .
$$

(a) Prove that L is a topological manifold.
(b) Prove that L is not a smooth submanifold of \mathbb{R}^{2}. (Hint: L is a smooth submanifold if and only if locally L is defined by $f(x, y)=0$ for some smooth function f with $d f$ nonvanishing.)
Q7. Let n be a positive integer. Consider the set of orthogonal $n \times n$ matrices $O(n)$ as a subset of the set of all $n \times n$ real matrices $\mathrm{Mat}_{n \times n}$ (which can be identified with the Euclidean space $\mathbb{R}^{n^{2}}$). Prove that $O(n)$ is an embedded submanifold of Mat ${ }_{n \times n}$. (Hint: realize $O(n)$ as the preimage of a smooth map from $\mathrm{Mat}_{n \times n}$ to another Euclidean space at a regular value and use the implicit function theorem.)
Q8. Let M be a smooth manifold and α is a differential 1-form. Prove that for any two vector fields X, Y on M, one has

$$
(d \alpha)(X, Y)=X(\alpha(Y))-Y(\alpha(X))-\alpha([X, Y]) .
$$

Here $X(\alpha(Y))$ is the directional derivative of the function $\alpha(Y)$ in the direction X and $[X, Y]$ is the Lie bracket.
Q9. Let $S \subset \mathbb{R}^{3}$ be a regular, connected, compact, orientable surface (without boundary) which is not homeomorphic to a sphere. Let $S_{+}, S_{0}, S_{-} \subset S$ be the set of points on S where the Gauss curvature is positive, zero, and negative, respectively. Prove that the three sets are all nonempty.
Q10. Let M be a smooth manifold and $\alpha_{1}, \ldots, \alpha_{k}$ are closed differential forms on M, i.e, $d \alpha_{i}=0$ for all $i=1, \ldots, k$.
(a) Prove that $\alpha_{1} \wedge \cdots \wedge \alpha_{k}$ is closed.
(b) If one of $\alpha_{1}, \ldots, \alpha_{k}$ is an exact differential form, prove that $\alpha_{1} \wedge \cdots \wedge \alpha_{k}$ is exact.

