TEXAS A&M UNIVERSITY TOPOLOGY/GEOMETRY QUALIFYING EXAM January 2023

- There are 10 problems. Try to solve 4 problems out of Problems 1-5 and 4 problems out of Problems 6-10 (you can try to solve all 10 problems as well, every extra problem will be graded as a bonus). Try to write as complete solutions and proofs as possible.
- Use a separate sheet for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.
 - 1. (a) Given two manifolds M and N and a smooth map $F: M \to N$ define regular points and regular values of F.
 - (b) Let $F : \mathbb{R}^3 \to \mathbb{R}^2$ is given by

$$F(x, y, z) = (x^{2} + 2y^{2} + 3z^{2}, 3x + 4y + 3z).$$

For what values of t the set $F^{-1}(1,t)$ is an embedded submanifold of \mathbb{R}^3 ? For each such t calculate the dimension of $F^{-1}(1,t)$.

- 2. (a) Formulate the Frobenius theorem.
 - (b) Consider the 1- form $\alpha = dx + zdy + zdz$ on \mathbb{R}^3 . Does an injective immersion $F : \mathbb{R}^2 \to \mathbb{R}^3$ exist such that $F^* \alpha = 0$? Prove your answer.
- 3. (a) Describe as detailed as possible how to define the integral of a differential n-form with compact support on an oriented n-dimensional manifold M.
 - (b) Prove that if ω is a closed 2-form on \mathbb{S}^4 (the 4-dimensional sphere), then the 4-form $\omega \wedge \omega$ must vanish somewhere in \mathbb{S}^4 (you can use here without proof that any closed 2-form on \mathbb{S}^4 is exact).
- 4. (a) Given a vector field X and a differential p-form ω on a manifold M define the Lie derivative $L_X \omega$ of ω with respect to the vector field X, involving the flow generated by X.
 - (b) Given a differential 1-form ω and two vetor fields X and Y prove that

$$(L_X\omega)(Y) = X(\omega(Y)) - \omega([X,Y]).$$
(1)

- (c) Let $M = \mathbb{R}^n$ with coordinates (x^1, \ldots, x^n) . If $X = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i}$ for some smooth functions v^i , $1 \le i \le n$, express $L_X(dx^j)$ in terms of v^i s.
- (d) Write the analog of the formula (1) for differential *p*-forms (no need to prove this formula).

- 5. Let $\operatorname{Gr}_3(\mathbb{R}^4)$ be the set of all 3-dimensional subspaces in \mathbb{R}^4 . Describe as completely as possible how to endow $\operatorname{Gr}_3(\mathbb{R}^4)$ with the structure of smooth manifold.
- 6. Recall that a topological space X is *locally compact* if for any point x there is a compact subspace C of X that contains an open neighborhood of x.
 - (a) Show that the set of rational numbers \mathbb{Q} , considered as a subspace of the space of real numbers together with the standard topology \mathbb{R} , is not locally compact.
 - (b) Let X be a locally compact space. If $f: X \to Y$ is continuous, does it follow that f(X) is locally compact as a subspace of Y?
- 7. Let $f: S^1 \to \mathbb{R}$ be a continuous map from the circle to the real numbers. Show that there exists a point x of S^1 such that f(x) = f(-x).
- 8. Let X be a metric space with metric d.
 - (a) Show that $d: X \times X \to \mathbb{R}$ is continuous.
 - (b) Show that the topology induced by d is the coarsest topology with respect to which the function d is continuous.
- 9. Compute the fundamental group of the closed orientable surface of genus 2.
- 10. Show that if n > 1, then every continuous map $f: S^n \to S^1$ is nullhomotopic.