Geometry-Topology Qualifying Examination January 2009

Notation. \mathbb{R} denotes the real numbers, and \mathbb{R}^n denotes Euclidean *n*-dimensional space. Similarly \mathbb{C} denotes the complex numbers, and \mathbb{C}^n denotes complex *n*-dimensional space.

- 1. Let M^m be a smooth *m*-dimensional manifold and let N^n be a closed embedded *n*dimensional submanifold of M. Define the tangent bundle T(M) as a 2m-dimensional smooth manifold. Show that T(N) is a closed embedded submanifold of T(M).
- **2.** If X is countably compact and Y is Hausdorff and second countable, then a continuous bijection $f : X \to Y$ is a homeomorphism. (Note: X is *countably compact* if every countable cover has a finite subcover.)
- **3.** Denote I = [0,1]. Let the space X be the set $I \times I$ with the lexicographic order topology ((a,b) < (c,d) if either a < c, or a = c and b < d). Prove that X is first countable and compact, but not separable.
- 4. Let X be a paracompact Hausdorff space. Show that if X contains a dense, Lindelöf subspace S, then X is also Lindelöf.
- **5.** Let G be a topological group and let H be a subgroup of G, and denote by G/H the set of left cosets of H in G. Show that $\pi: G \to G/H$ is an open map.
- 6. Prove that $M := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^4 z^3 = 1\}$ is a submanifold of \mathbb{R}^3 .
- 7. Classify the minimal surfaces $S \subset \mathbb{R}^3$ with zero Gauss curvature.
- 8. Let M be a manifold, and $N \subset M$ a submanifold. Suppose that X and Y are smooth vector fields on M with the property that $X_p, Y_p \in T_pN$ for all $p \in N$. Prove that $[X, Y]_p \in T_pN$.
- **9.** Let X and Y be two vector fields on \mathbb{R}^3 with the property that X_p and Y_p are linearly independent for all $p \in \mathbb{R}^3$. Pick a 1-form ω on \mathbb{R}^3 with the property that $\omega(X) = 0 = \omega(Y)$. Prove that though every point $p \in \mathbb{R}^3$ there exists a surface S such that the tangent spaces T_qS , $q \in S$, are spanned by X_q and Y_q if and only if $\omega \wedge d\omega = 0$.
- 10. Prove that the saddle surface z = xy is ruled. Compute its Gauss curvature.