Real analysis qualifying exam

January 2024

Each problem is worth ten points. Work each problem on a separate piece of paper. If you are not sure whether or not you are allowed to use a particular result to solve a problem, ask. m denotes the Lebesgue measure.

1. Let *E* be a Lebesgue measurable set of positive measure. Show that for any $0 < \alpha < 1$, there is an open interval *I* such that $m(E \cap I) > \alpha m(I)$.

2. Let $(x_n)_{n=1}^{\infty}$ be a sequence in [0, 1], and $(c_n)_{n=1}^{\infty}$ be a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} c_n < \infty$. Show that the series

$$\sum_{n=1}^{\infty} \frac{c_n}{|x - x_n|^{1/2}}$$

converges for almost every $x \in [0, 1]$.

3. Find the sum

$$\sum_{k=2}^{\infty} (-1)^k \sum_{n=2}^{\infty} \frac{1}{n^k}$$

Justify your calculation.

4. Let f be a Lebesgue measurable function on [0, 1] such that f > 0 a.e. Suppose $(E_n)_{n=1}^{\infty}$ is a sequence of measurable sets with the property that

$$\int_{E_n} f \, dx \to 0.$$

Prove that $m(E_n) \to 0$.

5. Recall that a point x is called isolated if $\{x\}$ is an open set. Show that a compact metric space with no isolated points is uncountable.

6. Recall that the graph of a function $f: X \to Y$ is the subset $\{(x, f(x)) : x \in X\} \subseteq X \times Y$.

- (a) State the Closed Graph Theorem.
- (b) Give an example of a discontinuous function $f : \mathbb{R} \to \mathbb{R}$ whose graph is closed. Here \mathbb{R} has standard topology.
- (c) Give an example of a discontinuous linear function $f : X \to Y$, where X and Y are both normed spaces, whose graph is closed. Justify your answer.

7. Let (X, \mathcal{M}, μ) be a measure space with μ a probability measure. Recall that

$$||f||_{p} = \left(\int |f|^{p} d\mu\right)^{1/p}, \quad ||f||_{\infty} = \text{esssup} |f|.$$

Show that $||f||_p$ is an increasing function of p for 0 .

8. Let X and Y be reflexive Banach spaces such that

- Y^* is separable.
- There exists a continuous linear transformation T from X to Y with kernel $\{0\}$.

Prove that X^* is separable.

9. Let \mathcal{P} be the space of real-valued polynomials, and \mathcal{P}_n the subspace of polynomials of degree at most n. Fix $a \in \mathbb{R}$.

(a) Show that for every n, there exists a unique $g_n \in \mathcal{P}_n$ such that for all $f \in \mathcal{P}_n$,

$$f(a) = \int_0^1 f(x)g_n(x) \, dx.$$

(b) Show that there does not exist a Lebesgue integrable $h \in L^1([0,1], dx)$ such that for all $f \in \mathcal{P}$,

$$f(a) = \int_0^1 f(x)h(x) \, dx.$$

10. Let C[0,1] be the space of all real-valued continuous functions on [0,1]. For $f \in C[0,1]$, denote co(f) the smallest closed convex subset of \mathbb{R} containing $\{f(x): 0 \le x \le 1\}$. Let Φ be a linear mapping from C[0,1] to \mathbb{R} such that $\Phi(f) \in co(f)$ for each f. Prove that

$$\lim_{n \to \infty} \Phi\left(\frac{n^2}{(nx-1)^2 + n^2}\right) = \Phi\left(\frac{1}{x^2 + 1}\right).$$