Real analysis qualifying exam

January 2024
Each problem is worth ten points. Work each problem on a separate piece of paper. If you are not sure whether or not you are allowed to use a particular result to solve a problem, ask. m denotes the Lebesgue measure.

1. Let E be a Lebesgue measurable set of positive measure. Show that for any $0<\alpha<1$, there is an open interval I such that $m(E \cap I)>\alpha m(I)$.
2. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in $[0,1]$, and $\left(c_{n}\right)_{n=1}^{\infty}$ be a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} c_{n}<\infty$. Show that the series

$$
\sum_{n=1}^{\infty} \frac{c_{n}}{\left|x-x_{n}\right|^{1 / 2}}
$$

converges for almost every $x \in[0,1]$.
3. Find the sum

$$
\sum_{k=2}^{\infty}(-1)^{k} \sum_{n=2}^{\infty} \frac{1}{n^{k}} .
$$

Justify your calculation.
4. Let f be a Lebesgue measurable function on $[0,1]$ such that $f>0$ a.e. Suppose $\left(E_{n}\right)_{n=1}^{\infty}$ is a sequence of measurable sets with the property that

$$
\int_{E_{n}} f d x \rightarrow 0
$$

Prove that $m\left(E_{n}\right) \rightarrow 0$.
5. Recall that a point x is called isolated if $\{x\}$ is an open set. Show that a compact metric space with no isolated points is uncountable.
6. Recall that the graph of a function $f: X \rightarrow Y$ is the subset $\{(x, f(x)): x \in X\} \subseteq X \times Y$.
(a) State the Closed Graph Theorem.
(b) Give an example of a discontinuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose graph is closed. Here \mathbb{R} has standard topology.
(c) Give an example of a discontinuous linear function $f: X \rightarrow Y$, where X and Y are both normed spaces, whose graph is closed. Justify your answer.
7. Let (X, \mathcal{M}, μ) be a measure space with μ a probability measure. Recall that

$$
\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}, \quad\|f\|_{\infty}=\operatorname{esssup}|f|
$$

Show that $\|f\|_{p}$ is an increasing function of p for $0<p \leq \infty$.
8. Let X and Y be reflexive Banach spaces such that

- Y^{*} is separable.
- There exists a continuous linear transformation T from X to Y with kernel $\{0\}$.

Prove that X^{*} is separable.
9. Let \mathcal{P} be the space of real-valued polynomials, and \mathcal{P}_{n} the subspace of polynomials of degree at most n. Fix $a \in \mathbb{R}$.
(a) Show that for every n, there exists a unique $g_{n} \in \mathcal{P}_{n}$ such that for all $f \in \mathcal{P}_{n}$,

$$
f(a)=\int_{0}^{1} f(x) g_{n}(x) d x
$$

(b) Show that there does not exist a Lebesgue integrable $h \in L^{1}([0,1], d x)$ such that for all $f \in \mathcal{P}$,

$$
f(a)=\int_{0}^{1} f(x) h(x) d x
$$

10. Let $C[0,1]$ be the space of all real-valued continuous functions on $[0,1]$. For $f \in C[0,1]$, denote $c o(f)$ the smallest closed convex subset of \mathbb{R} containing $\{f(x): 0 \leq x \leq 1\}$. Let Φ be a linear mapping from $C[0,1]$ to \mathbb{R} such that $\Phi(f) \in c o(f)$ for each f. Prove that

$$
\lim _{n \rightarrow \infty} \Phi\left(\frac{n^{2}}{(n x-1)^{2}+n^{2}}\right)=\Phi\left(\frac{1}{x^{2}+1}\right) .
$$

