
Problem 1. Consider all segments connecting the centers of adjacent
squares. They are of three types: blue, red, and the segments con-
necting squares of different color. Let B,R,M be the numbers of the
segments of each type, respectively.

The left ends of the horizontal segments belong to 99 columns (all
but the rightmost column) of the square, hence they belong to equal
numbers of red and blue squares. Similarly, the right ends of the hori-
zontal segments belong to 99 columns, and hence they belong to equal
numbers of red and blue squares. The same argument is valid for the
vertical edges. It follows that the number of ends of segments that
belong to red squares is equal to the number of ends of segments that
belong to blue squares. The first number is equal to 2R+M , the second
number is 2B +M . It follows that R = B.

Problem 2. (a) The first step from A will be either to B1, or to D1.
In the first case the bee has to continue along a shortest path from B1

to C, in the second case it must continue along a shortest path from
D1 to C. The statement of the problem follows.

(b) Denote by P (m,n) the number of shortest paths connecting op-
posite vertices of a rectangle of size m× n. We have show in (a) that

P (m,n) = P (m− 1, n) + P (m,n− 1).

We can also naturally define P (m, 0) = 1 and P (0, n) = 1, which agrees
with the recurrent formula.

We have to prove that P (m−1,n)
P (m,n−1) = m

n
for all m,n ≥ 1. Let us prove

it by induction. It is true for every pair (m,n), where m or n is equal
to 1, since we have P (0, n) = P (n, 0) = 1, and P (1, n − 1) = n and
P (m − 1, 1) = m. This will be the base of our induction. For the
inductive step, note that

P (m− 1, n)

P (m,n− 1)
=
P (m− 2, n) + P (m− 1, n− 1)

P (m− 1, n− 1),+P (m,n− 2)
=

P (m−2,n)
P (m−1,n−1) + 1

1 + P (m,n−2)
P (m−1,n−1)

=
m−1
n

+ 1
n−1
m

+ 1
=
m(m− 1 + n)

n(n− 1 +m)
=
m

n
.

Remark. The recurrent formula in part (a) shows that P (m,n) =(
m+n
n

)
=

(
m+n
m

)
, which is also easy to prove directly (for example, noting

that every path is determined by the decision which among m + n
segments on the path are the n horizontal ones). Then (b) can be

proved using the formula
(
m+n
n

)
= (m+n)!

m!n!
, or, conversely, (b) can be

used to prove this formula.

Problem 3. Let us introduce a coordinate system such that the ver-
tices of the grid are exactly the points with integer coordinates. Then
after the bee crawls along one edge of its path, its x or y coordinate is
changed by 1, while the other coordinate is unchanged. It follows that
the parity of x + y is changed each time. Thus, if the path is closed,
then the number of edges passed by the bee must be even, since the
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value of x+ y at the beginning and at the end of the path must be the
same.

An equivalent solution is to color the vertices of the grid in two
colors so that any two vertices connected by an edge have opposite
color. Then in any path the colors of the vertices will alternate, hence
every closed path has even length.

Problem 4. We know that the bee has to pass an even number of
edges. Let us group the edges on its path into pairs: first and second,
third and fourth, etc.. Then after traversing each pair of edges the bee
will change its position from a vertex of a square of the grid to the
opposite vertex of the square. In other words, the bee will be traveling
along the diagonals of the squares. The diagonals that it can visit
will form a square grid, and by Problem 3, the number of diagonals
traversed by the bee has to be even. Hence, the number of pairs of
edges passed by the bee must be even, i.e., the number of the edges
must be divisible by 4.

Problem 5. We can color the vertices of the hexagonal grid in two col-
ors (white and black) so that every two adjacent vertices have different
color, see the figure below.

Then the colors of the vertices on the path will alternate, hence the
path must have even length.

Problem 6. Solution 1. If we remove from the grid the edges of type
I, then the grid will be split into a sequence of paths, like in the figure
below.



We will call these paths I-levels, and order then from bottom to top in
the natural way (assuming that the edges of type I are vertical).

Let us color the vertices of the grid in two colors as in the figure from
the solution of Problem 5, and let us assume that the path has started
in a white vertex. Then it is easy to see that when the bee passes an
edge of type I on an odd place of its path, then the bee raises one level
higher. If it passes an edge of type I on an even place, then it descends
one level lower. It follows that we must have I0 = I1 in every closed
path. Similar arguments show that N0 = N1 and Z0 = Z1 for every
closed path.

It is easy to see that intersection of one I-level with one Z-level is one
edge of type N . Consequently, if the bee returns to the same I-level,
to the same Z-level, and to the same N -level, then it returns to the
same vertex. Thus, the condition I0 = I1, N0 = N1, and Z0 = Z1 is
both necessary and sufficient.
Solution 2. Consider a path γ, and let X1X2X3 . . . be the sequence of
types of the edges in the order they appear on the path, i.e., so that
Xi is the type of the edge ei. Note that since every vertex is an end of
exactly one edge of each type, this sequence together with the initial
vertex uniquely determine the path.

According to Problem 5, every closed path must have even length.
Let us group the types Xi into pairs: (X1X2)(X3X4)(X5X6) . . .. Let
us also color the vertices of the grid, as in Problem 4, and assume
that γ starts in a white vertex. Then it will be in a white vertex
after completing each pair of steps. Consider a coordinate system such
that the type I edges are parallel to the y-axis, and the width of the
hexagons (i.e., length of their shorter diagonals) is equal to 1. Below is
then a table showing how the x-coordinate of the bee is changed after
it completes one pair of edges, depending on their type, see the figure



below.

II IZ IN ZI ZZ ZN NI NZ NN
+0 +1/2 −1/2 −1/2 +0 −1 +1/2 +1 0

We can interpret these rules in the following way. Type Z on the first
place has value −1/2, type Z on the second place has value 1/2, type N
on the first place has value 1/2, type N on the second place has value
−1/2, type I has zero value on both places. Then it is easy to check
using the above table that in each case the sum of values is equal to
the change of the x-coordinate. It follows that the net change of the x-
coordinate of the bee along the path γ is equal to 1

2
(Z0−Z1−N0+N1).

Consequently, it is zero if and only if Z0 − Z1 − N0 + N1 = 0, or
Z0 − Z1 = N0 −N1.

Consider now a coordinate system such that the edges of type Z
are parallel to the y-axis. Then the net change of the x-coordinate
of the bee in this coordinate system is equal to zero if and only if
Z0 − Z1 = I0 − I1.

The path is closed if and only if both conditions are satisfied. It
follows that the path is closed if and only if the differences I0 − I1,
Z0 − Z1, and N0 − N1 are equal and the length of the path is even.
Note that the sum of the differences (I0 − I1) + (Z0 −Z1) + (N0 −N1)
is equal to 0 if the length of the path γ is even, and to -1 otherwise. If
the differences are equal then the latter case is impossible. It follows
that if they are equal, then they are all equal to 0. Consequently, γ is
closed if and only if I0 = I1, Z0 = Z1, and N0 = N1.

Problem 7. Consider two edges of type I in the path such that
all the edges between them are of type N or Z. Then the types of
the edges between the I-edges will alternate. It is easy to see that
if their number is even, then the path can be shortened: for exam-
ple, the path ZNZNZNZN connects the same vertices as the path
INZNZNZNZI, see the figure below.



It follows that the edges of type I are either only on even places, or
only on odd places. The same is true for the other two types Z and N .
But there are only three possible types, so one of the types appears on
the places of one parity, and the other two types appear on the places
of the other parity. It follows that one of the types appears exactly
half of time.

Problem 8. Color the vertices of the grid as in Problem 5. Then the

triangle will contain k(k+1)
2

vertices of one color and k(k−1)
2

vertices of
the other color. The colors of the vertices on the path will alternate,

hence the path can contain at most 2 · k(k−1)
2

+ 1 = k2 − k+ 1 vertices.

In other words, the number of missing vertices will be k(k−1)
2

+ k(k+1)
2

−
(k2 − k+ 1) = k− 1. The path shown in the figure below will have the
required number of vertices.

Problem 9. We know from the solution of Problem 7, that in every
shortest path on the grid there is one type I, Z, or N and one parity,
such that all edges of that parity along the path are of that type, while
all the edges of the opposite parity are of the two remaining types.
Consider a path γ of length n such that all edges of type I are on the
odd places, while all the edges on the even places are of types Z or
N . Let us introduce the same coordinate system as in the beginning
of the solution of Problem 6, and also let us assume that the starting
vertex of the path has the edge of type I going up, as in the figure
in the solution of Problem 7. Then it follows that the y-coordinate of

bee along the path will increase after every pair of edges by
√
3
2

, while
its x-coordinate will increase by 1/2 after passing every pair IZ and
decrease by 1/2 after passing every pair IN . Note that there are no
other possible pairs of edges. If n is odd, then at the end of the path



the bee will have to move by an edge of type I up. It follows that
the y-coordinate of the bee at the end of the path depends only on
n, and its x-coordinate will be equal to half of the difference between
the number of edges of type Z and the number of edges of type N . In
other words, it depends only on the number of edges of type Z (or N).
It follows that for even n there are n

2
+ 1 possibilities, and for odd n

there are n−1
2

+ 1 possibilities.
If the edges of type I are on the even places, then using the same

coordinate system as for the previous case, we see that the y-coordinate

of the bee will decrease by
√
3
2

after each pair of edges (and by 1/2 on
the last step, if n is odd). The x-coordinate will increase by 1/2 after
each pair NI and decrease by 1/2 after each pair ZI. It follows that
the final vertex will depend only on the length n and on the difference
between the numbers of the edges of types N and Z. Therefore, the
number of possible final positions of the bee are n

2
+ 1 for even n and

n+1
2

+ 1 for odd n. The sum of the two number of possibilities in the
two cases is n+ 2 for all values of n (odd and even). The result will be
the same, if we replace I by any of the types N or Z.

There are six possible types of shortest paths, depending on the par-
ity of the places where a given type of edges occurs, and on the type of
these edges. But there are paths belonging to two types simultaneously:
NININI . . ., IZIZIZ . . ., and so on. It is easy to see that these paths
are shortest, and each of them belongs to exactly two types. There
are 6 such paths for every n bigger than 1: the ones starting with
NI, IN, IZ, ZI,NZ, and ZN , respectively. If n = 1, then we have
three paths I,N, Z.

It follows that after a shortest path of length n the bee can reach
3(n + 2) − 6 = 3n vertices for all n bigger than 0. (Case n = 1 has to
be analyzed separately, but the answer is the same.)

Consequently, the total number of vertices that can be reached by
the bee after n or less steps is

1 + 3 + 6 + 9 + 12 + · · · + 3n =
3n2 + 3n+ 2

2
.

Note that the formula is also correct for n = 0.


