Solutions of 2018 Power Team
 Texas A\&M High School Mathematics Contest

October 2018

We will write the base ten expansion of a number n by $\overline{a_{k} a_{k-1} \ldots a_{1} a_{0}}$, so that $0 \leq a_{i} \leq 9$ and $n=\sum_{i=0}^{k} a_{i} 10^{i}$.

Let us prove the following simple properties of $S(n)$, which will be used later.

Lemma 1. The difference $S(n)-n$ is divisible by 9 .
Proof. If $n=\overline{a_{k} a_{k-1} \ldots a_{1} a_{0}}$, then $n-S(n)=10^{k} a_{k}+10^{k-1} a_{k-1}+\cdots+$ $10 a_{1}+a_{0}-a_{k}-a_{k-1}-\cdots-a_{1}-a_{0}=\left(10^{k}-1\right) a_{k}+\left(10^{k-1}-1\right) a_{k-1}+$ $\cdots+9 a_{1}$. But $10^{i}-1=99 \ldots 9$ is obviously divisible by 9 .

Lemma 2. For every positive integer n we have $S(n) \leq 9(\lfloor\log n\rfloor+1)$, where $\lfloor x\rfloor$ denotes the largest integer not greater than x, and $\log x$ is the decimal logarithm.
Proof. If $n=\overline{a_{k} a_{k-1} \ldots a_{1}}$ has k digits, then $10^{k-1} \leq n<10^{k}$, so $k-1 \leq \log n<k$, i.e., $\lfloor\log n\rfloor=k-1$. We also have $S(n)=a_{k}+$ $a_{k-1}+\cdots+a_{1} \leq 9 k=9(\lfloor\log n\rfloor+1)$.

Problem 1.

By Lemma 2, we have $S\left(5^{n}\right) \leq 9\left(\left\lfloor\log 5^{n}\right\rfloor+1\right)=9(\lfloor n \log 5\rfloor+1)<$ $9(0.7 n+1)$. So, we have $2^{n} \leq 6.3 n+9$, which implies $n \leq 5$. It follows that we have to check $n=1,2,3,4,5$. The corresponding values of 5^{n} are $5,25,125,625,3125$. Their sums of digits are $5,7,8,13,11$. So, the answer is $n=3$.

Problem 2.

Using Lemma 2, we get $S\left(2018^{2018}\right) \leq 9(\lfloor 2018 \cdot \log 2018\rfloor+1)=$ $9 \cdot 6670=60030$. If $n \leq 60030$, then $S(n) \leq S(59999)=41$. Consequently, $S\left(S\left(2018^{2018}\right)\right) \leq 41$, therefore $S\left(S\left(S\left(2018^{2018}\right)\right)\right) \leq S(39)=$ 12.

The residue of division of 2018 by 9 is 2 . The residues of 2018^{m} modulo 9 are therefore the same as for 2^{m}, which are (for $m=0,1,2, \ldots$): $1,2,4,8,7,5,1,2,4,8,7,5, \ldots$ This sequence is periodic with period 6 . Since the residue of 2018 modulo 6 is 2 , we conclude that 2018^{2018} gives residue 4 modulo 9 . Among the numbers $1,2, \ldots, 12$ only 4 will have this residue. Consequently, the answer is 4 .

Problem 3.

We have $n \leq 2017$. It follows that $S(n) \leq S(1999)=28$. Hence, $S(S(n)) \leq 10$, and $S(S(S(n))) \leq 9$. Consequently,
$n=2018-S(n)-S(S(n))-S(S(S(n))) \geq 2018-28-10-9=1971$.
If r is the residue of n modulo 9 , then the residue of $n+S(n)+S(S(n))+$ $S(S(S(n)))$ is $4 r$. Note that $4 r$ is congruent to 2 modulo 9 if and only
if r is congruent to 5 modulo 9 . The residue of 2018 is 2 , which implies that $r=5$. It follows that the only candidates for n are

$$
1976,1985,1994,2003,2012 .
$$

The corresponding values of $n+S(n)+S(S(n))+S(S(S(n)))$ are

$$
\begin{aligned}
1976+23+5+5 & =2009 \\
1985+23+5+5 & =2018 \\
1994+23+5+5 & =2027 \\
2003+5+5+5 & =2018 \\
2012+5+5+5 & =2027
\end{aligned}
$$

The answer is $n=1985$ and 2003.

Problem 4.

a) Let us prove the inequality by induction. It is obviously true if one of the numbers m, n is equal to zero. Let m, n be positive integers. Let m_{0} and n_{0} be the last digits of m, n, respectively. Then $m=10 m_{1}+m_{0}$ and $n=10 n_{1}+n_{0}$, where m_{1} and n_{1} are obtained from m, n by erasing the last digits. We have $m_{1}<m$ and $n_{1}<n$, and we may assume, by the inductive hypothesis, that $S\left(m_{1}+n_{1}\right) \leq S\left(m_{1}\right)+S\left(n_{1}\right)$. If $m_{0}+n_{0}<10$, then the last digit of $m+n$ is $m_{0}+n_{0}$, and we have

$$
\begin{aligned}
& S(m+n)=S\left(10\left(m_{1}+n_{1}\right)+m_{0}+n_{0}\right)= \\
& \qquad \begin{array}{l}
S\left(m_{1}+n_{1}\right)+m_{0}+n_{0} \leq \\
\\
S\left(m_{1}\right)+S\left(n_{1}\right)+m_{0}+n_{0}=S(m)+S(n)
\end{array}
\end{aligned}
$$

If $m_{0}+n_{0} \geq 10$, then the last digit of $m+n$ is $m_{0}+n_{0}-10$ and

$$
\begin{gathered}
S(m+n)=S\left(10\left(m_{1}+n_{1}+1\right)+m_{0}+n_{0}-10\right)= \\
S\left(m_{1}+n_{1}+1\right)+m_{0}+n_{0}-10 \leq \\
S\left(m_{1}\right)+S\left(n_{1}\right)+1+m_{0}+n_{0}-10= \\
S(m)+S(n)-9<S(m)+S(n) .
\end{gathered}
$$

b) It follows directly from inequality (a) that

$$
S(m n)=S(\underbrace{n+\cdots+n}_{m \text { times }}) \leq m S(n)
$$

Write $m=\overline{a_{k} a_{k-1} \ldots a_{1} a_{0}}$. Then, using (a) and the inequality $S(m n) \leq$ $m S(n)$, we get

$$
\begin{gathered}
S(m n)=S\left(10^{k} a_{k} n+10^{k-1} a_{k-1} n+\cdots+10 a_{1} n+a_{0} n\right) \leq \\
S\left(10^{k} a_{k} n\right)+S\left(10^{k-1} a_{k-1} n\right)+\cdots+S\left(10 a_{1} n\right)+S\left(a_{0} n\right)= \\
S\left(a_{k} n\right)+S\left(a_{k-1} n\right)+\cdots+S\left(a_{1} n\right)+S\left(a_{0} n\right) \leq \\
a_{k} S(n)+a_{k-1} S(n)+\cdots+a_{0} S(n)= \\
\quad\left(a_{k}+a_{k-1}+\cdots+a_{0}\right) S(n)=S(m) S(n) .
\end{gathered}
$$

Problem 5.

Use Problem 4:

$$
S(n)=S(1000 \cdot n)=S(125 \cdot 8 n) \leq S(125) S(8 n)=8 S(8 n)
$$

and

$$
S(n)=S\left(10^{5} n\right)=S\left(2^{5} \cdot 5^{5} n\right) \leq S(32) S\left(5^{5} n\right)=5 S\left(5^{5} n\right)
$$

Problem 6.

Let us assume at first that the last digit of x is not 0 . We have $x\left(10^{n}-1\right)=10^{n} x-x$. Write $x=\overline{a_{n} a_{n-1} \ldots a_{1}}$, where we allow leading digits (e.g., a_{n}) to be equal to 0 . Then

$$
\begin{aligned}
& x\left(10^{n}-1\right)=10^{n} x-x= \\
& \quad \frac{a_{n} a_{n-1} \ldots a_{1} \underbrace{00 \ldots 0}_{n \text { times }}}{}-\overline{a_{n} a_{n-1} \ldots a_{1}}= \\
& \quad \overline{a_{n} a_{n-1} \ldots a_{2}\left(a_{1}-1\right)\left(9-a_{n}\right)\left(9-a_{n-1}\right) \ldots\left(9-a_{2}\right)\left(10-a_{1}\right)},
\end{aligned}
$$

and $S\left(x\left(10^{n}-1\right)\right)=a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}-1+9-a_{n}+9-a_{n-1}+$ $\cdots+9-a_{2}+10-a_{1}=9 n$.

Suppose that x ends with k zeros. Then $x=10^{k} y$, where the last digit of y is not zero. We have $1 \leq y<10^{n}$, hence, by the proven above, we have $S\left(y\left(10^{n}-1\right)\right)=9 n$. But $S\left(x\left(10^{n}-1\right)\right)=S\left(y\left(10^{n}-1\right)\right)$.

Problem 7.

We have $9 \cdot 99 \cdot 9999 \cdot \ldots \cdot \underbrace{99 \ldots 99}_{2^{n}}=(10-1)\left(10^{2}-1\right)\left(10^{4}-1\right) \cdots\left(10^{2^{n}}-\right.$
1). Let $x=(10-1)\left(10^{2}-1\right) \cdots\left(10^{2^{n-1}}-1\right)$. We have then $x<10 \cdot 10^{2} \cdot 10^{4} \cdots 10^{2^{n-1}}=10^{1+2+2^{2}+\cdots+2^{n-1}}=10^{2^{n}-1}<10^{2^{n}}$.

It follows from the previous problem that the answer is $9 \cdot 2^{n}$.

Problem 8.

Denote $f(x)=x+S(x)$. If x does not end with 9 , then $f(x+1)=$ $f(x)+2$. If x ends with exactly k nines, then all of them will become zeros in $x+1$, and the last non-nine digit will increase by 1 . It follows that in this case $f(x+1)=f(x)-9 k+2$.

Let x be the largest positive integer such that $f(x) \leq n$ (it exists, since we always have $f(x)>x)$. Then $f(x+1)=f(x)+2$, since otherwise $f(x+1) \leq f(x)-7<n$, which contradicts the choice of x. We have either $f(x)=n$, or $f(x) \leq n-1$. If $f(x) \leq n-2$, then we get $f(x+1)=f(x)+2 \leq n$, which is a contradiction. Consequently, either $f(x)=n$ or $f(x+1)=n+1$.

Problem 9. We will prove that there exist arbitrarily large sets of numbers with the same value of $x+S(x)$. We will construct such sets by showing inductively how to construct sets A_{n} consisting of 2^{n} numbers with the same value of $x+S(x)$.

Let $f(x)=x+S(x)$, as in the previous problem. Suppose that $10^{N}>n$ and consider

$$
f\left(9 \cdot 10^{N}+n\right)=9 \cdot 10^{N}+n+9+S(n)=9 \cdot 10^{N}+9+f(n),
$$

and
$f\left(9 \cdot 10^{N}-n\right)=9 \cdot 10^{N}-n+8+9 N+1-S(n)=9 \cdot 10^{N}+9+9 N-f(n)$.
The obtained two expressions are equal if and only if $f(n)=9 N-f(n)$, i.e., if $N=\frac{2 f(n)}{9}$. We can find such an N if $f(n)$ is divisible by 9 . Note that then $f\left(9 \cdot 10^{N}+n\right)=9 \cdot 10^{N}+9+f(n)$ and $f\left(9 \cdot 10^{N}-n\right)=$ $9 \cdot 10^{N}+9+9 N-f(n)$ are also divisible by 9 .

We can use now this observation to construct the sets A_{n} inductively. Each set A_{n} will have 2^{n} numbers with the same value of $f(x)$ such that $f(x)$ is divisible by 9 . Let us start with $A_{0}=\{9\}$. If A_{n} is constructed, and $f(x)=a$ for all $x \in A_{n}$, where a is divisible by 9 , then the set A_{n+1} consists of numbers $9 \cdot 10^{\frac{2 a}{9}}+x$ and $9 \cdot 10^{\frac{2 a}{9}}-x$ for all $x \in A_{n}$. Then it follows from the previous paragraph that for all elements $y \in A_{n+1}$ the value of $f(y)$ is the same and divisible by 9 .

Let us show that the size of A_{n+1} is be twice the size of A_{n}. It is enough to show that on each step we have that $10^{\frac{2 a}{9}}$ is bigger than any element of A_{n}. But $a=f(x)>x$ for every $x \in A_{n}$, and $10^{\frac{2 a}{9}}>a$ for every $a \geq 1$.

Problem 10.

Let $0 \leq k_{1}<k_{2}<\ldots<k_{1000}$, and consider the number $n=10^{k_{1000}}+$ $10^{k_{999}}+\cdots+10^{k_{1}}$. We have $S(n)=1000$. We have $n^{2}=10^{2 k_{1000}}+$ $10^{2 k 999}+\cdots+10^{2 k_{1}}+2 \sum_{1 \leq i_{1}<i_{2} \leq 1000} 10^{k_{i_{1}}+k_{i_{2}}}$. If all the numbers $k_{i_{1}}+k_{i_{2}}$ for $1 \leq i_{1} \leq i_{2} \leq 1000$ are pairwise different, then $S\left(n^{2}\right)=1000+2$. $\frac{1000 \cdot 999}{2}=1000^{2}$. The numbers $k_{i_{1}}+k_{i_{2}}$ are pairwise different if the sequence k_{i} grows sufficiently fast. For instance, we can take $k_{i}=2^{i}$.
Problem 11. Squares of integers give only residues $0,1,4$, and 7 modulo 9. Consequently, their sums of digits may give only these residues. In particular, 2018 can not be equal to $S\left(n^{2}\right)$, as it is congruent to 2 modulo 9. On the other hand, we have

$$
\begin{gathered}
S\left(\left(10^{k}-1\right)^{2}\right)=S\left(10^{2 k}-2 \cdot 10^{k}+1\right)=S(\underbrace{99 \ldots 98}_{k} \underbrace{00 \ldots 01}_{k})=9 k, \\
S\left(\left(10^{k}-2\right)^{2}\right)=S\left(10^{2 k}-4 \cdot 10^{k}+4\right)=S(\underbrace{99 \ldots 96}_{k} \underbrace{00 \ldots 04}_{k})=9 k+1, \\
S\left(\left(10^{k}-3\right)^{2}\right)=S\left(10^{2 k}-6 \cdot 10^{k}+9\right)=S(\underbrace{99 \ldots 94}_{k} \underbrace{00 \ldots 09}_{k})=9 k+4, \\
S\left(\left(10^{k+1}-5\right)^{2}\right)=S\left(10^{2 k+2}-10^{k+2}+25\right)=S(\underbrace{99 \ldots 9}_{k} \underbrace{00 \ldots 025}_{k+2})=9 k+7,
\end{gathered}
$$

which implies that all positive integers congruent to $0,1,4$, or 7 modulo 9 are sums of digits of squares. In particular, there exists n such that $S\left(n^{2}\right)=2017$.

