We will write the base ten expansion of a number \(n \) by \(a_k a_{k-1} \ldots a_1 a_0 \), so that \(0 \leq a_i \leq 9 \) and \(n = \sum_{i=0}^{k} a_i 10^i \).

Let us prove the following simple properties of \(S(n) \), which will be used later.

Lemma 1. The difference \(S(n) - n \) is divisible by 9.

Proof. If \(n = a_k a_{k-1} \ldots a_1 a_0 \), then \(n - S(n) = 10^k a_k + 10^{k-1} a_{k-1} + \cdots + 10 a_1 + a_0 - a_k - a_{k-1} - \cdots - a_1 - a_0 = (10^k - 1) a_k + (10^{k-1} - 1) a_{k-1} + \cdots + 9 a_1 \). But \(10^i - 1 = 99 \ldots 9 \) is obviously divisible by 9. \(\square \)

Lemma 2. For every positive integer \(n \) we have \(S(n) \leq 9(\lceil \log n \rceil + 1) \), where \(\lceil x \rceil \) denotes the largest integer not greater than \(x \), and \(\log x \) is the decimal logarithm.

Proof. If \(n = a_k a_{k-1} \ldots a_1 \) has \(k \) digits, then \(10^{k-1} \leq n < 10^k \), so \(k - 1 \leq \log n < k \), i.e., \(\lceil \log n \rceil = k - 1 \). We also have \(S(n) = a_k + a_{k-1} + \cdots + a_1 \leq 9 k = 9(\lceil \log n \rceil + 1) \). \(\square \)

Problem 1.

By Lemma 2, we have \(S(5^n) \leq 9(\lceil \log 5^n \rceil + 1) = 9(\lceil n \log 5 \rceil + 1) < 9(0.7n + 1) \). So, we have \(2^n \leq 6.3n + 9 \), which implies \(n \leq 5 \). It follows that we have to check \(n = 1, 2, 3, 4, 5 \). The corresponding values of \(5^n \) are 5, 25, 125, 625, 3125. Their sums of digits are 5, 7, 8, 13, 11. So, the answer is \(n = 3 \).

Problem 2.

Using Lemma 2, we get \(S(2018^{2018}) \leq 9(\lceil 2018 \cdot \log 2018 \rceil + 1) = 9 \cdot 6670 = 60030 \). If \(n \leq 60030 \), then \(S(n) \leq S(59999) = 41 \). Consequently, \(S(S(2018^{2018})) \leq 41 \), therefore \(S(S(S(2018^{2018}))) \leq S(39) = 12 \).

The residue of division of 2018 by 9 is 2. The residues of \(2018^m \) modulo 9 are therefore the same as for \(2^m \), which are (for \(m = 0, 1, 2, \ldots \)): 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 7, 5, \ldots. This sequence is periodic with period 6. Since the residue of 2018 modulo 6 is 2, we conclude that 2018\(^{2018} \) gives residue 4 modulo 9. Among the numbers 1, 2, \ldots, 12 only 4 will have this residue. Consequently, the answer is 4.

Problem 3.

We have \(n \leq 2017 \). It follows that \(S(n) \leq S(1999) = 28 \). Hence, \(S(S(n)) \leq 10 \), and \(S(S(S(n))) \leq 9 \). Consequently, \(n = 2018 - S(n) - S(S(n)) - S(S(S(n))) \geq 2018 - 28 - 10 - 9 = 1971 \).

If \(r \) is the residue of \(n \) modulo 9, then the residue of \(n + S(n) + S(S(n)) + S(S(S(n))) \) is \(4r \). Note that \(4r \) is congruent to 2 modulo 9 if and only
if r is congruent to 5 modulo 9. The residue of 2018 is 2, which implies that $r = 5$. It follows that the only candidates for n are
The corresponding values of $n + S(n) + S(S(n)) + S(S(S(n)))$ are
\[
\begin{align*}
1976 + 23 + 5 + 5 &= 2009 \\
1985 + 23 + 5 + 5 &= 2018 \\
1994 + 23 + 5 + 5 &= 2027 \\
2003 + 5 + 5 + 5 &= 2018 \\
2012 + 5 + 5 + 5 &= 2027.
\end{align*}
\]
The answer is $n = 1985$ and 2003.

Problem 4.

a) Let us prove the inequality by induction. It is obviously true if one of the numbers m, n is equal to zero. Let m, n be positive integers. Let m_0 and n_0 be the last digits of m, n, respectively. Then $m = 10m_1 + m_0$ and $n = 10n_1 + n_0$, where m_1 and n_1 are obtained from m, n by erasing the last digits. We have $m_1 < m$ and $n_1 < n$, and we may assume, by the inductive hypothesis, that $S(m_1 + n_1) \leq S(m_1) + S(n_1)$. If $m_0 + n_0 < 10$, then the last digit of $m + n$ is $m_0 + n_0$, and we have
\[
S(m + n) = S(10(m_1 + n_1) + m_0 + n_0) = S(m_1 + n_1) + m_0 + n_0 \leq S(m) + S(n).
\]
If $m_0 + n_0 \geq 10$, then the last digit of $m + n$ is $m_0 + n_0 - 10$ and
\[
S(m + n) = S(10(m_1 + n_1 + 1) + m_0 + n_0 - 10) = S(m_1 + n_1 + 1) + m_0 + n_0 - 10 \leq S(m) + S(n) - 9 < S(m) + S(n).
\]

b) It follows directly from inequality (a) that
\[
S(mn) = S(n^{m \text{ times}}) \leq mS(n).
\]
Write $m = a_k a_{k-1} \ldots a_1 a_0$. Then, using (a) and the inequality $S(mn) \leq mS(n)$, we get
\[
S(mn) = S(10^k a_k n + 10^{k-1} a_{k-1} n + \ldots + 10 a_1 n + a_0 n) \leq S(10^k a_k n) + S(10^{k-1} a_{k-1} n) + \ldots + S(10 a_1 n) + S(a_0 n) = a_k S(n) + a_{k-1} S(n) + \ldots + a_0 S(n) = (a_k + a_{k-1} + \ldots + a_0) S(n) = S(m) S(n).
\]

Problem 5.
Use Problem 4:

\[S(n) = S(1000 \cdot n) = S(125 \cdot 8n) \leq S(125)S(8n) = 8S(8n) \]

and

\[S(n) = S(10^5n) = S(2^5 \cdot 5^5n) \leq S(32)S(5^5n) = 5S(5^5n). \]

Problem 6.

Let us assume at first that the last digit of \(x \) is not 0. We have \(x(10^n - 1) = 10^n x - x \). Write \(x = a_n a_{n-1} \ldots a_1 \) where we allow leading digits (e.g., \(a_n \)) to be equal to 0. Then

\[x(10^n - 1) = 10^n x - x = a_n a_{n-1} \ldots a_1 \underbrace{00 \ldots 0}_n - a_n a_{n-1} \ldots a_1 = a_n a_{n-1} \ldots a_2 (a_1 - 1)(9 - a_n)(9 - a_{n-1}) \ldots (9 - a_2)(10 - a_1), \]

and \(S(x(10^n - 1)) = a_n + a_{n-1} + \ldots + a_2 + a_1 - 1 + 9 - a_n + 9 - a_{n-1} + \ldots + 9 - a_2 + 10 - a_1 = 9n. \)

Suppose that \(x \) ends with \(k \) zeros. Then \(x = 10^k y \), where the last digit of \(y \) is not zero. We have \(1 \leq y < 10^n \), hence, by the proven above, we have \(S(y(10^n - 1)) = 9n. \) But \(S(x(10^n - 1)) = S(y(10^n - 1)) \).

Problem 7.

We have \(9 \cdot 99 \cdot 9999 \cdot \ldots \cdot 999 \ldots 99 = (10 - 1)(10^2 - 1)(10^4 - 1) \ldots (10^{2^n - 1} - 1) \).

Let \(x = (10 - 1)(10^2 - 1) \ldots (10^{2^n - 1} - 1) \). We have then

\[x < 10 \cdot 10^2 \cdot 10^4 \ldots 10^{2^n-1} = 10^{1+2+2^2+\ldots+2^n-1} = 10^{2^n-1} < 10^{2^n}. \]

It follows from the previous problem that the answer is \(9 \cdot 2^n \).

Problem 8.

Denote \(f(x) = x + S(x) \). If \(x \) does not end with 9, then \(f(x + 1) = f(x) + 2 \). If \(x \) ends with exactly \(k \) nines, then all of them will become zeros in \(x + 1 \), and the last non-nine digit will increase by 1. It follows that in this case \(f(x + 1) = f(x) - 9k + 2 \).

Let \(x \) be the largest positive integer such that \(f(x) \leq n \) (it exists, since we always have \(f(x) > x \)). Then \(f(x + 1) = f(x) + 2 \), since otherwise \(f(x + 1) \leq f(x) - 7 < n \), which contradicts the choice of \(x \).

We have either \(f(x) = n \), or \(f(x) \leq n - 1 \). If \(f(x) \leq n - 2 \), then we get \(f(x + 1) = f(x) + 2 \leq n \), which is a contradiction. Consequently, either \(f(x) = n \) or \(f(x + 1) = n + 1 \).

Problem 9. We will prove that there exist arbitrarily large sets of numbers with the same value of \(x + S(x) \). We will construct such sets by showing inductively how to construct sets \(A_n \) consisting of \(2^n \) numbers with the same value of \(x + S(x) \).
Let \(f(x) = x + S(x) \), as in the previous problem. Suppose that \(10^N > n \) and consider
\[
f(9 \cdot 10^N + n) = 9 \cdot 10^N + n + 9 + S(n) = 9 \cdot 10^N + 9 + f(n),
\]
and
\[
f(9 \cdot 10^N - n) = 9 \cdot 10^N - n + 8 + 9N + 1 - S(n) = 9 \cdot 10^N + 9 + 9N - f(n).
\]
The obtained two expressions are equal if and only if \(f(n) = 9N - f(n) \), i.e., if \(N = \frac{2f(n)}{9} \). We can find such an \(N \) if \(f(n) \) is divisible by 9. Note that then \(f(9 \cdot 10^N + n) = 9 \cdot 10^N + 9 + f(n) \) and \(f(9 \cdot 10^N - n) = 9 \cdot 10^N + 9 + 9N - f(n) \) are also divisible by 9.

We can use now this observation to construct the sets \(A_n \) inductively. Each set \(A_n \) will have \(2^n \) numbers with the same value of \(f(x) \) such that \(f(x) \) is divisible by 9. Let us start with \(A_0 = \{9\} \). If \(A_n \) is constructed, and \(f(x) = a \) for all \(x \in A_n \), where \(a \) is divisible by 9, then the set \(A_{n+1} \) consists of numbers \(9 \cdot 10^{2a} + x \) and \(9 \cdot 10^{2a} - x \) for all \(x \in A_n \). Then it follows from the previous paragraph that for all elements \(y \in A_{n+1} \) the value of \(f(y) \) is the same and divisible by 9.

Let us show that the size of \(A_{n+1} \) is be twice the size of \(A_n \). It is enough to show that on each step we have that \(10^{2a} \) is bigger than any element of \(A_n \). But \(a = f(x) > x \) for every \(x \in A_n \), and \(10^{2a} > a \) for every \(a \geq 1 \).

Problem 10.

Let \(0 \leq k_1 < k_2 < \ldots < k_{1000} \), and consider the number \(n = 10^{k_{1000}} + 10^{k_{999}} + \cdots + 10^{k_1} \). We have \(S(n) = 1000 \). We have \(n^2 = 10^{2k_{1000}} + 10^{2k_{999}} + \cdots + 10^{2k_1} + 2\sum_{1 \leq i_1 < i_2 \leq 1000} 10^{k_{i_1} + k_{i_2}} \). If all the numbers \(k_{i_1} + k_{i_2} \) for \(1 \leq i_1 \leq i_2 \leq 1000 \) are pairwise different, then \(S(n^2) = 1000 + 2 \cdot \frac{1000 \cdot 999}{2} = 1000^2 \). The numbers \(k_{i_1} + k_{i_2} \) are pairwise different if the sequence \(k_i \) grows sufficiently fast. For instance, we can take \(k_i = 2^i \).

Problem 11. Squares of integers give only residues 0, 1, 4, and 7 modulo 9. Consequently, their sums of digits may give only these residues. In particular, 2018 can not be equal to \(S(n^2) \), as it is congruent to 2 modulo 9. On the other hand, we have
\[
\begin{align*}
S((10^k - 1)^2) &= S(10^{2k} - 2 \cdot 10^k + 1) = S(\underbrace{99 \ldots 98}_{k} \underbrace{00 \ldots 01}_{k}) = 9k, \\
S((10^k - 2)^2) &= S(10^{2k} - 4 \cdot 10^k + 4) = S(\underbrace{99 \ldots 96}_{k} \underbrace{00 \ldots 04}_{k}) = 9k + 1, \\
S((10^k - 3)^2) &= S(10^{2k} - 6 \cdot 10^k + 9) = S(\underbrace{99 \ldots 94}_{k} \underbrace{00 \ldots 09}_{k}) = 9k + 4, \\
S((10^{k+1} - 5)^2) &= S(10^{2k+2} - 10^{k+2} + 25) = S(\underbrace{99 \ldots 90}_{k} \underbrace{00 \ldots 025}_{k+2}) = 9k + 7,
\end{align*}
\]
which implies that all positive integers congruent to 0, 1, 4, or 7 modulo 9 are sums of digits of squares. In particular, there exists \(n \) such that \(S(n^2) = 2017 \).