BC Exam Solutions Texas A\&M High School Math Contest November, 2022

1. Let x be the number of people in the audience. Then $x / 5$ listened for 60 minutes, $x / 10$ listened for 0 minutes. The remainder is $7 x / 10$, out of which $7 x / 20$ listened for 20 minutes, and $7 x / 20$ for 40 minutes. The average is

$$
\left(60 \cdot \frac{x}{5}+20 \cdot \frac{7 x}{20}+40 \cdot \frac{7 x}{20}\right) / x=12+7+14=33
$$

Answer: 33 minutes.
2. The distance from the bottom of the wall to the tip of the ladder is equal, by Pythagorian theorem to $\sqrt{25^{2}-7^{2}}=\sqrt{576}=24$. If it slips 4 feet down, it will be 20 feet. Then the distance from the foot of the ladder to the wall will become $\sqrt{25^{2}-20^{2}}=5 \sqrt{5^{2}-4^{2}}=15$, so it slides $15-7=8$ feet.

Answer: 8 feet.
3. There are $3 \times 12=36$ points. They form $\frac{36 \cdot 35}{2}$ pairs. Each pair defines a line. These lines are different except for the lines passing through the points belonging to the same edge of the cube. Each edge has 3 points, which gives 3 pairs of points. So, we over-counted each line passing through an edge 2 times. It follows that there are $\frac{36 \cdot 35}{2}-2 \cdot 12=18 \times 35-24=$ $6(105-4)=606$.

Answer: 606 lines.
4. We have $[x]=\frac{22}{20}\{x\}$ and $0 \leq\{x\}<1$, so we get $0 \leq[x]<\frac{22}{20}$. Since $[x]$ is an integer, this implies that $[x]=0$ or $[x]=1$. In the first case, $\{x\}=0$, so $x=0$. In the second case, $\{x\}=\frac{20}{22}=\frac{10}{11}$, so $x=\frac{21}{11}$ is the only non-zero solution.

Answer: $x=\frac{21}{11}=1 \frac{10}{11}$.
5. The wire will consist of two segments $\overline{A B}$ and $\overline{C D}$ tangent to both circles (where A and D are on the pole of diameter 6 , and B and C are on the pole of diameter 18). Let P and Q be the centers of the corresponding circles of diameter 6 and 18 , respectively. Then $\angle P A B=\angle A B Q=90^{\circ}$. Let $A B M P$ be a rectangle. Then $M Q=9-3=6$ and $P Q=3+9=12$. We see that in the right triangle $\triangle P M Q$ the hypotenuse $P Q$ is two times longer than the leg $Q M$. Consequently, $\angle M Q P=60^{\circ}$ and $A B=P M=12 \cdot \frac{\sqrt{3}}{2}=6 \sqrt{3}$. We also see that $\angle A P D=120^{\circ}$, so the arc $A P$ is equal to $6 \pi / 3=2 \pi$. Similarly, $\angle B Q C=120^{\circ}$, so the longer arc $B C$ is equal to $\frac{2}{3} 2 \pi \cdot 9=12 \pi$. It follows that the length of the wire is $12 \sqrt{3}+2 \pi+12 \pi=14 \pi+12 \sqrt{3}$.

Answer: $14 \pi+12 \sqrt{3}$ inches.
6. Denote by A_{1} the foot of the height $A A_{1}$. Then $\triangle C H A_{1}$ is congruent to $\triangle A B A_{1}$, since $\angle H C B$ and $\angle H A B$ are both equal to $90^{\circ}-\angle C B A$, and $A B=C H$. It follows that $C A_{1}=$ $A A_{1}$, so $\triangle A C A_{1}$ is an isosceles right triangle. It follows that $\angle A C A_{1}=\angle A C B=45^{\circ}$.

Answer: 45°.
7. If point (x, y) is the final point of a ten-step path, then $|x|+|y| \leq 10$ and the sum $x+y$ is even. On the other hand, it is easy to see that every point satisfying these conditions is a final point of a path (go to the point using the shortest path of $|x|+|y|$ steps, and then make the necessary number of pairs of consecutive left-right and up-down steps). Let us replace (x, y) by $(x+y, x-y)$. The condition $|x|+|y| \leq 10$ implies $|x+y| \leq 10$ and $|x-y| \leq 10$. Conversely, if $|x+y| \leq 10$ and $|x-y| \leq 10$, then $|x|+|y| \leq 10$, since $|x|+|y| \in\{x+y,-x+y,-x-y, x-y\}$, so $|x|+|y|=||x|+|y|| \in\{|x+y|,|x-y|\}$. Note also that $x+y$ is even if and only if $x-y$ is even.

It follows that the number of points (x, y) such that $|x|+|y| \leq 10$ and $x+y$ is even is equal to the number of points (a, b) such that $|a| \leq 10,|b| \leq 10$ and a, b are even. There are 11 even numbers a such that $|a| \leq 10$.

Answer: 121 points.
8. Each of the particles has a constant velocity while it moves inside one side of $\triangle A B C$. If $\left(x_{1}(t), y_{1}(t)\right)$ and $\left(x_{2}(t), y_{2}(t)\right)$ are two particles moving with a constant velocity $\left(v_{1}, u_{1}\right)$ and $\left(v_{2}, u_{2}\right)$, respectively, then $x_{1}(t)=v_{1} t+x_{1}(0), y_{1}(t)=u_{1} t+y_{1}(0), x_{2}(t)=v_{2} t+x_{2}(0)$, and $y_{2}(t)=v_{2} t+y_{2}(0)$. Then the midpoint of the segment joining them is

$$
\left(\frac{v_{1}+v_{2}}{2} t+\frac{x_{1}(0)+x_{2}(0)}{2}, \frac{u_{1}+u_{2}}{2} t+\frac{y_{1}(0)+y_{2}(0)}{2}\right) .
$$

Consequently, the midpoint moves with a constant speed, hence it traces a line segment.
The velocity of one of our particles changes when it passes through a vertex of $\triangle A B C$. Then the other particle is in the midpoint of the opposite side. It follows that the region R is the triangle formed by the midpoints of the medians of $\triangle A B C$. This triangle is obtained from $\triangle A B C$ by a homothety with center in the intersection point O of the medians. The coefficient of the homothety is $\left(\frac{2}{3}-\frac{1}{2}\right): \frac{2}{3}=1: 4$. Consequently, the ratio of the area of the region R to the area of $\triangle A B C$ is $1 / 16$.

Answer: 1/16.
9. Let y_{1} and y_{2} be the roots of the last polynomial. Then $y_{1}+y_{2}=-\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=$ $\frac{\left(x_{0}+x_{1}\right)+\left(x_{0}+x_{2}\right)+\cdots+\left(x_{0}+x_{n}\right)}{n}=x_{0}+\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$.

We also have $y_{1} y_{2}=\frac{b_{1}+b_{2}+\cdots+b_{n}}{n}=\frac{x_{0} x_{1}+x_{0} x_{2}+\cdots+x_{0} x_{n}}{n}=x_{0} \cdot \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$.
We see that roots y_{1} and y_{2} are x_{0} and $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$.
Answer: x_{0} and $\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$.
10. Let $B H$ be the height of $\triangle A B C$. Denote $A H=x$. Then square of the height is equal to $25-x^{2}$ and to $49-(9-x)^{2}$. So, $25-x^{2}=49-81+18 x-x^{2}$, which implies that $57=18 x$, hence $x=\frac{19}{6}$. Since $\triangle A B D$ is isosceles, its height $B H$ is also its median. Consequently, $A D=2 x=\frac{19}{3}$, and $D C=9-\frac{19}{3}=\frac{8}{3}$.

Answer: $A D: D C=19: 8$.
11. Let us count how many numbers there are with non-decreasing order of the digits. The middle digit can not equal to 0 . If it is 1 , then there is only one possibility for the first digit, and 9 for the last. If it is 2 , then there are 2 possibilities for the first digit and 8 for the last. Continuing this way, we see that there are
$1 \cdot 9+2 \cdot 8+3 \cdot 7+4 \cdot 6+5 \cdot 5+6 \cdot 4+7 \cdot 3+8 \cdot 2+9 \cdot 1=2(9+16+21+24)+25=165$.
We use similar arguments for the non-increasing order. In this case, if the middle digit is 0 , then there are 9 possibilities for the first digit (any except for 0) and 1 for the last digit. If it is 1 , then we still have 9 possibilities for the first digit, but 2 for the last one.

We see that we get the answer
$9 \cdot 1+9 \cdot 2+8 \cdot 3+7 \cdot 4+6 \cdot 5+5 \cdot 6+4 \cdot 7+3 \cdot 8+2 \cdot 9+1 \cdot 10=9+2(18+24+28+30)+10=219$.
Answer: 384 numbers.
12. We are looking for n such that $n+[[n \sqrt{2}] \sqrt{2}]=2[n \sqrt{2}]$. Since $[x]>x-1$ for all x, we have $n+[n \sqrt{2}] \sqrt{2}-1<2[n \sqrt{2}]$, hence $n+(\sqrt{2}-2)[n \sqrt{2}]<1$. Since $\sqrt{2}-2<0$ and $[n \sqrt{2}]<n \sqrt{2}$, we get $n+(\sqrt{2}-2) n \sqrt{2}<1$, i.e., $(3-2 \sqrt{2}) n<1$, which implies that $n<\frac{1}{3-2 \sqrt{2}}=3+2 \sqrt{2}<6$. It follows that $x \in\{1,2,3,4,5\}$.

For $n=1:[n \sqrt{2}]=1,[[n \sqrt{2}] \sqrt{2}]=1$.
For $n=2:[n \sqrt{2}]=2,[[n \sqrt{2}] \sqrt{2}]=2$.
For $n=3:[n \sqrt{2}]=4$ (since $16<18<25),[[n \sqrt{2}] \sqrt{2}]=5$ (since $25<32<36$).
For $n=4:[n \sqrt{2}]=5,[[n \sqrt{2}] \sqrt{2}]=7($ since $49<50<64)$.
For $n=5:[n \sqrt{2}]=7,[[n \sqrt{2}] \sqrt{2}]=9($ since $81<98<100)$.
We see that all of them are arithmetic sequences, except for $n=4$. It follows that the set of numbers satisfying the condition of the problem is $\{1,2,3,5\}$. Their sum is 11 .

Answer: 11.
13. Let A, B, C be the centers of the circles of radii 3,4 , and 5 , respectively. Let $C D$ be the height of $\triangle A B C$. Denote $x=A D$. Then square $C D$ is equal to $8^{2}-x^{2}$ and to $9^{2}-(7-x)^{2}$. It follows that $64-x^{2}=81-49+14 x-x^{2}$, so $x=\frac{16}{7}$. Let M be the common point of the circles of radii 3 and 4 , and let L be the midpoint of the segment $X Y$ of the common tangent line to the circles of radii 3 and 4 contained in the circle of radius 5 . Then $C L M D$ is a rectangle. Consequently, $C L$ and $D M$ are equal to $3-x=\frac{5}{7}$. Then $X L$ is equal to $\sqrt{5^{2}-\frac{5^{2}}{7^{2}}}=\sqrt{\frac{25 \cdot 49-25}{49}}=\sqrt{\frac{25 \cdot 48}{49}}=\frac{20}{7} \sqrt{3}$. The length of $X Y$ is double of the length of $X L$, so $X L=\frac{40}{7} \sqrt{3}$.

Answer: $\frac{40 \sqrt{3}}{7}$.
14. Since $\angle E C A=\angle C A D+\angle E D A=\angle B D A=\angle B D E+\angle E D A=\angle B C E=\angle C B D+$ $\angle B D E$, we get that $\angle C A D=\angle B D E$ and $\angle C B D=\angle E D A$. Consequently, $\triangle C B D$ and $\triangle C D A$ are similar. It follows that $C D: a=b: C D$, so $C D=\sqrt{a b}$.

Answer: $\sqrt{a b}$.
15. A number is divisible by 7,8 , and 9 if and only if it is divisible by their product 504 (since they are pairwise coprime). The number $\overline{2022 x y z}=2,022,000+\overline{x y z}$ is divisible by 504 if and only if $456+\overline{x y z}$ is divisible by 504 . We have $\frac{456+\overline{x y z}}{504} \leq \frac{1455}{504}<3$. It follows that $\overline{x y z}=504 n-456$ for $n=1$ or $n=2$. In the first case, $\overline{x y z}=48$, i.e., $x=0, y=4, z=8$, which is not allowed by the conditions of the problem. In the second case, $\overline{x y z}=552$.

Answer: (5, 5, 2).
16. We get $100 a+10 b+c=2(10 a+b+10 b+c+10 c+a)$, so $100 a+10 b+c=22(a+b+c)$, so that $78 a=12 b+21 c$. Dividing it by 3 , we get $26 a=4 b+7 c$. It follows that c is even, and we get $13 a=2 b+\frac{7}{2} c$. The maximal value of the right-hand side is $2 \cdot 9+\frac{7}{2} \cdot 8=46$. It follows that $a \in\{1,2,3\}$.

If $a=1$, then we get $13=2 b+\frac{7}{2} c$. Then $c<4$, i.e., $c \in\{0,2\}$. We see that $c=2$ and $b=3$, i.e., $\overline{a b c}=132$, but it is not divisible by 9 ;

If $a=2$, then we get $26=2 b+\frac{7}{2} c$. Since $2 b$ is even, $\frac{7}{2} c$ must be also even, so $c \in\{0,4\}$ (as $c=8$ is too big). We can not have $c=0$, since then $b=13$. We see that $c=4, b=6$, i.e., $\overline{a b c}=264$ is the only solution in this case, but it is not divisible by 9 ;

If $a=3$, then we get the equation $39=2 b+\frac{7}{2} c$. Since $2 b$ is even, $\frac{7}{2} c$ has to be odd, so $c \in\{2,6\}$. The first case, $c=2$, implies $b=16$, which is not allowed. In the second case, we have $39=2 b+21$, so $b=9$, and we get the solution $\overline{a b c}=396$. This is the only solutions that is divisible by 9 .

Answer: 396.
17. The equation is equivalent to $n!=(m!)^{2}-2 m!$, so $\frac{n!}{m!}=m!-2$. Since $m \neq 0,1,2$, we get $n \geq m$, so

$$
n(n-1) \cdots(m+1)=m!-2
$$

If $n-m \geq 3$, then the left-hand side is divisible by 3 , but $m!-2$ is not. We get, therefore, $n \in\{m, m+1, m+2\}$ or , equivalently, $m \in\{n, n-1, n-2\}$. Now consider these three cases separately:

1. If $m=n$, then we get $1=n!-2$, i.e., $n!=3$, which is impossible.
2. If $m=n-1$, then $n=(n-1)!-2$, i.e., $(n-1)!=n+2$. We see that $n=4$ is a solution, $n=1,2,3$ are not, and $(n-1)!>n+2$ for all $n>4$.
3. If $m=n-2$, then $n(n-1)=(n-2)$! -2 or, equivalently, $(n-2)!=n(n-1)+2$. Observe that $(n-2)!<n(n-1)+2$ for $n \leq 6$, while $(n-2)!>n(n-1)+2$ for $n>6$, so there are no solutions in this case.

Answer: $n=4, m=3$.
18. We have $(n+1)^{2}-(n+1)+1=n^{2}+n+1$. Therefore, the product is equal to

$$
\begin{array}{r}
\left(\frac{2-1}{2+1} \cdot \frac{3-1}{3+1} \cdot \frac{4-1}{4+1} \cdots \frac{n-1}{n+1}\right)\left(\begin{array}{r}
\frac{2^{2}+2+1}{2^{2}-2+1} \cdot \frac{3^{2}+3+1}{3^{2}-3+1} \cdot \frac{4^{2}+4+1}{4^{2}-4+1} \cdots \frac{n^{2}+n+1}{n^{2}-n+1}
\end{array}\right)= \\
\frac{1 \cdot 2}{n(n+1)} \cdot \frac{n^{2}+n+1}{2^{2}-2+1}=\frac{2\left(n^{2}+n+1\right)}{3 n(n+1)}
\end{array}
$$

Answer: $\frac{2\left(n^{2}+n+1\right)}{3 n(n+1)}$
19. We have $(x-1)+(y-1)+(z+1)=0$, so

$$
\frac{b^{2}+a^{2}-c^{2}-2 a b}{2 a b}+\frac{a^{2}+c^{2}-b^{2}-2 a c}{2 a c}+\frac{b^{2}+c^{2}-a^{2}+2 b c}{2 b c}=0 .
$$

This can be rewritten as

$$
\frac{(a-b+c)(a-b-c)}{2 a b}+\frac{(a-c+b)(a-c-b)}{2 a c}+\frac{(b+c+a)(b+c-a)}{2 b c}=0
$$

hence

$$
\begin{aligned}
& 0=(b+c-a)\left(\frac{b-a-c}{2 a b}+\frac{c-a-b}{2 a c}+\frac{a+b+c}{2 b c}\right)= \\
&(b+c-a) \frac{b c-a c-c^{2}+b c-a b-b^{2}+a^{2}+a b+a c}{2 a b c}= \\
&(b+c-a) \frac{2 b c-c^{2}-b^{2}+a^{2}}{2 a b c}=\frac{(b+c-a)(a+b-c)(a-b+c)}{2 a b c} .
\end{aligned}
$$

It follows that either $a=b+c$, or $c=a+b$, or $b=a+c$.

1. If $a=b+c$ or $b=a+c$, then $x-1=\frac{(a-b+c)(a-b-c)}{2 a b}=0$, so $x=1$.
2. If $c=a+b$, then $x+1=\frac{(a+b+c)(a+b-c)}{2 a b}=0$, so $x=-1$.

If we take $a=1, b=1, c=2$, then $x=-1, y=1, z=1$. If we take $a=2, b=1, c=1$, then $x=1, y=1, z=-1$. This shows that the values $x=1$ and $x=-1$ are possible.

Answer: $x=1$ or $x=-1$.
20. Subtracting the equation $x+y=u v$ from $x y=u+v$, we get

$$
x y-x-y=-u v+u+v,
$$

i.e.

$$
(x-1)(y-1)=-(u-1)(v-1)+2
$$

Note that $(x-1)(y-1)$ is a nonnegative integer, and $-(u-1)(v-1)$ is a nonpositive integer. Their difference can be 2 in the following three cases:

1) $(x-1)(y-1)=0$ and $(u-1)(v-1)=2$. From the second equation, $(u, v)=(2,3)$ or $(3,2)$. From the first relation, $x=1$ or $y=1$. The initial equation $x+y=u v$ now implies that (x, y) is $(1,5)$ or $(5,1)$, and (u, v) is $(2,3)$ or $(3,2)$. We have 4 possible quadruplets in this case.
2) $(x-1)(y-1)=1$ and $(u-1)(v-1)=1$. Then $x=y=u=v=2$ - the only possible quadruplet in this case.
3) $(x-1)(y-1)=2$ and $(u-1)(v-1)=0$. This case is similar to case 1$)$, but (x, y) are switched with (u, v). Thus (u, v) is $(1,5)$ or $(5,1)$, and (x, y) is $(2,3)$ or $(3,2)$, so we have four possible quadruplets in this case.

Answer: 9 quadruples.

