BEST STUDENT EXAM OPEN
Texas A\&M High School Math Contest

November 12, 2022

Directions: Answers should be simplified, and if units are involved include them in your answer.
Problem 1. What is the sum of all positive integers n such that $6 n$ is divisible by $1+2+\cdots+n$?
Problem 2. It is given that one root of $2 x^{2}+r x+s=0$, with r and s real numbers, is $3+2 i(i=\sqrt{-1})$. What is the value of $r+s$?

Problem 3. In a triangle with integer side lengths, one side is three times as long as a second side, and the length of the third side is 15 . What is the difference between the greatest and the least possible perimeters of the triangle?

Problem 4. A family consists of a mother, a father, and several children. The average age of the members of the family is 20 , the father is 48 years old, and the average age of the mother and children is 16 . How many children are in the family?

Problem 5. The number $25^{64} \cdot 64^{25}$ is the square of a positive integer N. What is the sum of the digits in the decimal representation of N ?

Problem 6. A five-digit number is of the form $\overline{b b c a c}$, where $0 \leq a<b<c \leq 9$, and b is the average of a and c. How many different five-digit numbers satisfy all these properties?

Problem 7. Evaluate

$$
\lim _{n \rightarrow \infty} \cos ^{n}\left(\sqrt{\frac{2022}{n}}\right)
$$

Problem 8. Find $\sin \theta+\cos \theta$ if we know that $\sin ^{3} \theta+\cos ^{3} \theta=\frac{11}{16}$.
Problem 9. Evaluate

$$
\int_{1}^{2022} \frac{\{x\}^{\lfloor x\rfloor}}{\lfloor x\rfloor} d x
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x; and $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x.

Problem 10. A rectangle is inscribed in a sector of a circle of radius 1 as shown in the figure. The central angle of the sector is $\theta=\pi / 3$. What is the maximum possible area for the rectangle?

Problem 11. Find the sum of the infinite series

$$
\sum_{n=1}^{\infty} \frac{n}{10^{n}}
$$

Problem 12. How many positive perfect squares have five or fewer digits, and have a 1,2 , or 3 as their leftmost digit?

Problem 13. In the triangle $\triangle A B C$ points D, E, and F divide the segments $\overline{B C}, \overline{C A}$, and $\overline{A B}$, respectively, in the ratio 2:1, i.e., $B D / D C=C E / E A=A F / F B=2$. What is the ratio of the area of the triangle formed by $\overline{A D}, \overline{B E}$, and $\overline{C F}$ to the area of the triangle $\triangle A B C$?

Problem 14. Evaluate

$$
\int_{\alpha}^{\beta} \cos \left(x-\frac{1}{x}\right) d x
$$

where $\alpha=\frac{1}{6}\left(\sqrt{36+\pi^{2}}-\pi\right), \beta=\frac{1}{6}\left(\sqrt{36+\pi^{2}}+\pi\right)$.
Problem 15. What is the prime factorization of $1,003,003,001$? Write your answer in the increasing order of prime bases abbreviating repeated factors by the use of exponents (powers).

Problem 16. Suppose you repeatedly toss a fair coin until you get two heads in a row. What is the probability that you stop on the 10th toss? Express your answer in reduced form.

Problem 17. Let \mathbb{Z} be the set of all integer numbers. Suppose a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies the identities

$$
f(0)=1, \quad f(2 a)+2 f(b)=f(f(a+b)) \quad \text { for all } a, b \in \mathbb{Z} .
$$

What is $f(2022) ?$
Problem 18. In the figure below, $A D=C D=1, B D=3$, and $\angle B D C=60^{\circ}$. Compute the shaded area.

Problem 19. Monika has four distinct integers on her list. If she removes any integer from the list, the three remaining integers add up to a perfect square. What is the smallest possible value of Monika's greatest integer?

Problem 20. Find the sum of the following series

$$
\sum_{n=1}^{\infty} \frac{n!\left(n-\frac{3}{4}\right)}{(2 n)!}
$$

