## Math Contest CD Exam <br> November 12, 2022

Directions: If units are involved, include them in your answer.

1. Find $a+b+c$ if $a, b$, and $c$ are positive integers satisfying

$$
a b c+2 a b+2 b c+2 c a+4 a+4 b+4 c=447
$$

2. Find the difference between the maximum and the minimum of $y$ satisfying

$$
\log _{2} x+\frac{12}{\log _{2} x}-\log _{x} y=6
$$

if $2 \leq x \leq 16$.
3. A parallelogram has sides of length 2 and 3 . One of its diagonals has length 4. Find the length of the other diagonal.
4. If $8^{x}-8^{-x}=4$ for a real number $x$, what is the value of $2^{x}-2^{-x}$ ?
5. Find the area of $\triangle A B C$ if the perimeter is $30, A H=6, \overline{A H} \perp \overline{B C}$, and $\overline{A C} \perp \overline{A B}$.

6. Suppose $T$ is a triangle in the plane with sides of length 2,3 and 4 . Let $F$ be the figure that consists of all points of $T$ as well as all points at distance at most 1 from the triangle. Find the perimeter of the figure $F$.
7. Consider a rectangle $A C D E$ with $A E=1, A C=\sqrt{3}$. Let $B$ be the point such that $A B=A C$ and $\overline{\mathrm{AB}} \perp \overline{\mathrm{AD}}$. Find the distance between $C$ and $\overline{\mathrm{BD}}$.

8. Find the maximum of $2^{x} \cdot 4^{y}$ provided $\left\{\begin{array}{l}x+3 y \leq 5 \\ 2 x+y \leq 5 \\ 0 \leq x, 0 \leq y\end{array}\right.$
9. The hypotenuse of the right triangle has length $c$ and legs have length $a$ and $b$. On each side of the triangle a square is drawn outside of the triangle. Express the area of the hexagon in terms of $a, b$, and $c$, whose vertices are the vertices of these squares which are not vertices of the original triangle?
10. For $0<x<5$ and $0<t$, find the minimum value of the following.

$$
(x-t)^{2}+\left(\sqrt{25-x^{2}}-\frac{72}{t}\right)^{2}
$$

11. Let $a, b$, and $c$ be three numbers (not necessarily different) chosen randomly and independently from the set $\{1,2,3,4,5\}$. Find the probability that the number $a b+c$ is even.
12. Let $f$ be a monic polynomial of degree 4 with integer coefficients, and let $g(x)=(x-n) f(x)$ for an integer $n$. Find $n$ if

I $g(4)=13, g(9)=8$
II $f(-x)=f(x)$
13. How many $9^{\prime}$ 's are there in the decimal expansion of $99999899999^{2}$ ?
14. Find Find $f(x)$ if $f(2022 x+f(0))=2022 x^{2}$ for all real numbers $x$ and $f(0) \neq 0$.
15. Suppose a rectangular prism is built out of $9 \times 13 \times 5$ unit cubes. Find the number of unit cubes that the main diagonal passes through.
16. Consider the triangle $\triangle A B C$ with $A C=6, A B=8$, and $\overline{\mathrm{AC}} \perp \overline{\mathrm{AB}}$. Let $\ell$ be the line passing $B$ that is perpendicular to $\overline{\mathrm{BC}}$. Find the distance between $\ell$ and the centroid $G$ of $\triangle A B C$. (The centroid of $\triangle A B C$ is the point in which the three medians of the triangle intersect)

17. Let $X$ be the set of 8 vertices of a unit cube. Find the number of one-to-one functions $f: X \rightarrow X$ such that the distance between $f(v)$ and $v$ is 1 for all vertices of $X$.
18. Let $A, B, C, D$, and $E$ be the points $(0,0,0),(1,0,0),(0,1,0),(0,0,1)$, and $(1,1,2)$ respectively. Find the volume of the polyhedron with edges $\overline{A B}, \overline{A C}, \overline{A D}, \overline{B C}, \overline{B D}, \overline{B E}, \overline{C D}, \overline{C E}$, and $\overline{D E}$.
19. Let $\alpha, \beta$, and $\gamma$ be the three roots of $x^{3}-x-2=0$. Find $((\alpha-\beta)(\beta-\gamma)(\gamma-\alpha))^{2}$.
20. Suppose a bike has wheels with radius 1 ft and the axle distance 3 ft . Consider two rim points on the front and rear wheels of a bike respectively with angle difference $90^{\circ}\left(\bmod 360^{\circ}\right)$. Find the largest distance between these two points while a bike moves along straight line.


