DE Exam
Texas A\&M High School Math Contest

November 12, 2022
Directions: All answers should be simplified.

1. It is known that $(\sqrt{2}-1)^{4}=\sqrt{N}-\sqrt{N-1}$, where N is an integer. Find N.
2. A parallelogram has sides of length 2 and 3. One of its diagonals has length 4. Find the length of the other diagonal.
3. Find the probability that an integer number chosen randomly in the range from 1 to 10^{5} (inclusive) has exactly three odd digits (not necessarily distinct).
4. Evaluate the following expression: $\cos \left(\arcsin \frac{4}{5}\right)+\arccos \left(\sin \frac{4}{5}\right)$.
5. Find the largest integer x satisfying the inequality $x<\sqrt{|x-2022|}$.
6. Suppose T is a triangle in the plane with sides of length 2,3 and 4 . Let F be the figure that consists of all points of T as well as all points at distance at most 1 from the triangle. Find the perimeter of the figure F.
7. A function $f:(0, \infty) \rightarrow(0, \infty)$ satisfies a functional equation $x+f(x)=2 f(1 / x)$ for all $x>0$. Find $f(3)$.
8. Find the shortest distance between two circles in the coordinate plane given by equations $x^{2}+y^{2}=81$ and $x^{2}+y^{2}+6 x-8 y+21=0$.
9. How many real solutions does the equation $\left(x^{2}-x-1\right)^{5 x^{2}-19 x+16}=1$ have?
10. Let P be a pentagon in the coordinate plane with vertices at points $(0,0),(4,0)$, $(5,2),(3,4)$ and $(-1,2)$. Find the area of P.
11. Let r be a real root of the equation $x^{3}-x+1=0$. Evaluate the expression $r^{5}+r^{4}+r^{2}+\frac{1}{r}$.
12. Suppose S_{1} and S_{2} are two circles of radius 1 that touch each other at the point O. Let S be a circle centered at O and tangent to both S_{1} and S_{2}. Let S_{0} be a circle that touches S internally and touches S_{1} and S_{2} externally. Find the radius of S_{0}.
13. Let f be the function of a real variable given by the formula $f(x)=\frac{c x+c^{2}}{3 x-6}$, where c is a real number. Determine all values of the parameter c for which the function f is invertible and, moreover, coincides with its inverse function on the intersection of their domains.
14. Let P be a regular triangular pyramid (that is, the base of P is an equilateral triangle and the apex is projected onto the center of the base). It is given that three edges of the pyramid have length 4 and the other three edges have length 7 . Find the volume of P.
15. Find a triple of integers (a, b, c) such that $90<a<b<c<180$ and the sum of any two of the numbers a, b, c is a perfect square.
16. A regular dodecagon (12-gon) is inscribed into a circle of radius 1. How many diagonals of the dodecagon intersect the concentric circle of radius $1 / 3$?
17. Find the sum of all even integers n in the range from 1 to 400 such that the sum $1+2+3+\cdots+n$ is a perfect square.
18. In a triangle $A B C$ with $|A B|>|A C|$, the median $A M$, the angle bisector $A D$ and the altitude $A H$ divide the angle $B A C$ into 4 equal parts. Find $\angle A B C$.
19. The number $5 \cdot 3^{2} \cdot 2^{336}$ is the smallest positive integer that has exactly 2022 different divisors. How many digits does this number have when written out (in decimal notation)?
20. Find the least positive integer n such that the sum

$$
\sin 14^{\circ}+\sin 28^{\circ}+\sin 42^{\circ}+\cdots+\sin (14 n)^{\circ}
$$

has negative value.

