EF Exam
Texas A\&M High School Math Contest
November 12, 2022

Directions: All answers should be simplified.

1. Find the maximum value of the function $f(x)=\left(\sin ^{2} x+3\right)\left(2 \cos ^{2} x+3\right)$.
2. If $\ln x+\ln y=\frac{13}{6}$ and $(\ln x)(\ln y)=1$, find the value of $\log _{x} y+\log _{y} x$.
3. The curve $y=e^{2 x}+3$ intersects the y-axis at the point A, and the normal line to the curve at A intersects the x-axis at the point B. Find the distance from the origin O to the line $A B$.
4. Find the exact value of

$$
\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \cdots \cos 44^{\circ} \csc 45^{\circ} \csc 46^{\circ} \cdots \csc 89^{\circ}
$$

5. A circle passes through the points $A(-4,0)$ and $B(0,-8)$. The center of the circle lies on the y-axis. Find the radius of the circle.
6. Find $\int_{-3}^{3}\left(\frac{\sin x}{\ln \left(5+x^{2}\right)}+\frac{1}{x+5}\right) d x$.
7. Determine m such that the polynomial $P(x)=2 x^{29}+x^{23}+x^{12}+m x^{11}+x^{8}+5 x^{6}+x^{2}+2$ is divisible by the polynomial $x^{4}+x^{3}+x^{2}+x+1$.
8. Find the sum

$$
\ln \left(1+\frac{1}{2}\right)+\ln \left(1+\frac{1}{3}\right)+\ln \left(1+\frac{1}{4}\right)+\cdots+\ln \left(1+\frac{1}{2022}\right)
$$

9. Let $f(x)$ be a one-to-one function such that $f(1)=4, f(3)=1, f^{\prime}(1)=-4$, and $f^{\prime}(3)=2$. If $g(x)=f^{-1}(x)$ is the inverse function of $f(x)$, find the slope of the tangent line to the graph of $\frac{1}{g(x)}$ at $x=1$.
10. Find $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sqrt{n^{2}-k^{2}}}{n^{2}}$.
11. Find x such that $(\sqrt[7]{5 \sqrt{2}+7})^{x}-(\sqrt[7]{5 \sqrt{2}-7})^{x}=140 \sqrt{2}$.
12. Find the 2022th derivative of $f(x)=\sin ^{4} x+\cos ^{4} x$.
13. Let $f(x)$ be a differentiable function such that

$$
f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t
$$

for all real numbers x. Find $f(6)$.
14. Consider the expression

$$
E(n)=\frac{1}{2 n+1}\binom{2 n}{0}-\frac{1}{2 n}\binom{2 n}{1}+\frac{1}{2 n-1}\binom{2 n}{2}+\cdots-\frac{1}{2}\binom{2 n}{2 n-1}+\binom{2 n}{2 n}
$$

where n is a positive integer. Find $E(2022)$.
15. Find the sum of all solutions $\theta \in\left[0, \frac{\pi}{2}\right]$ of the equation

$$
\frac{\sin 2 \theta+\sin 4 \theta+\sin 6 \theta+\sin 8 \theta}{\cos 2 \theta+\cos 4 \theta+\cos 6 \theta+\cos 8 \theta}=1 .
$$

16. Find $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2022}\right)-(\sin x)^{2022}}{x^{2024}}$.
17. Consider the sequence $\left\{a_{n}\right\}$ where $a_{n}=\sum_{k=1}^{n} \frac{k^{2}+k}{n^{3}+k}$ for every positive integer n. Find $\lim _{n \rightarrow \infty} a_{n}$.
18. Let $a_{n}=\int_{\frac{1}{n+1}}^{\frac{1}{n}} \arctan (n x) d x$ and $b_{n}=\int_{\frac{1}{n+1}}^{\frac{1}{n}} \arcsin (n x) d x$. Find $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.
19. Evaluate the integral

$$
I=\int_{0}^{1} \frac{\sin ^{2}\left(\frac{\pi x^{2}}{2}\right)}{\sqrt{1-x^{2}}} d x
$$

20. A dart is thrown at (and hits) a square dartboard. Assuming each spot on the dartboard has an equal chance of being hit, find the probability that the dart lands at a point closer to the center of the board than any of the edges. Express your answer in the form $\frac{a+b \sqrt{c}}{d}$, where a, b, c and d are integers.
