EF Exam Solutions
 Texas A\&M High School Math Contest

November 12, 2022

All answers must be simplified, and if units are involved, be sure to include them.

1. Find the maximum value of the function $f(x)=\left(\sin ^{2} x+3\right)\left(2 \cos ^{2} x+3\right)$.

Solution: If we denote $\cos ^{2} x=y$ we obtain

$$
f(x)=g(y)=(4-y)(2 y+3)=-2 y^{2}+5 y+12 .
$$

Since $y \in[0,1]$ and $g(y)$ is increasing on $\left(-\infty, \frac{5}{4}\right]$ (therefore on $[0,1]$), we get that the maximum value of $f(x)$ is $g(1)=15$.

Answer: 15
2. If $\ln x+\ln y=\frac{13}{6}$ and $(\ln x)(\ln y)=1$, find the value of $\log _{x} y+\log _{y} x$.

Solution: We have that

$$
\begin{aligned}
\log _{x} y+\log _{y} x & =\frac{\ln y}{\ln x}+\frac{\ln x}{\ln y}=\frac{(\ln y)^{2}+(\ln x)^{2}}{(\ln x)(\ln y)}=(\ln y)^{2}+(\ln x)^{2} \\
& =(\ln x+\ln y)^{2}-2(\ln x)(\ln y)=\left(\frac{13}{6}\right)^{2}-2=\frac{97}{36} .
\end{aligned}
$$

Answer: $\frac{97}{36}$
3. The curve $y=e^{2 x}+3$ intersects the y-axis at the point A, and the normal line to the curve at A intersects the x-axis at the point B. Find the distance from the origin O to the line $A B$.
Solution: Let $f(x)=e^{2 x}+3$. Since $f(0)=4$ and $f^{\prime}(x)=2 e^{2 x}$, we get that the coordinates of A are $(0,4)$ and that the slope of the tangent line to the curve at A is $f^{\prime}(0)=2$. So the slope of the normal line to the curve at A is $-\frac{1}{2}$ and an equation for this line is $y-4=-\frac{1}{2} x$. When $y=0$ we obtain $x=8$ which is the x-coordinate of B. Then $O A=4, O B=8$ and $A B=4 \sqrt{5}$. Let M be the projection of O onto $A B$. Since $\triangle O A B$ is a right triangle we get that $O M \cdot A B=O A \cdot O B$ which implies that $O M=\frac{8}{\sqrt{5}}=\frac{8 \sqrt{5}}{5}$.

Answer: $\frac{8}{\sqrt{5}}$ or $\frac{8 \sqrt{5}}{5}$
4. Find the exact value of

$$
\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} \cdots \cos 44^{\circ} \csc 45^{\circ} \csc 46^{\circ} \cdots \csc 89^{\circ}
$$

Solution: Since

$$
\csc \alpha=\frac{1}{\sin \alpha}=\frac{1}{\cos \left(90^{\circ}-\alpha\right)}
$$

we have that

$$
\csc 46^{\circ}=\frac{1}{\cos 44^{\circ}}, \quad \csc 47^{\circ}=\frac{1}{\cos 43^{\circ}}, \quad \cdots, \csc 89^{\circ}=\frac{1}{\cos 1^{\circ}} .
$$

Therefore our product is equal to $\csc 45^{\circ}=\sqrt{2}$.
Answer: $\sqrt{2}$
5. A circle passes through the points $A(-4,0)$ and $B(0,-8)$. The center of the circle lies on the y-axis. Find the radius of the circle.
Solution: An equation of the circle has the form $(x-h)^{2}+(y-k)^{2}=r^{2}$, where the center has coordinates (h, k) and the radius is r. Since the center is on the y-axis we get that $h=0$. Taking into account that the points A and B are on the circle we obtain that $(-4)^{2}+(-k)^{2}=r^{2}$ and $(-8-k)^{2}=r^{2}$. These equations are equivalent to $16+k^{2}=r^{2}$ and $64+16 k+k^{2}=r^{2}$. By subtracting the two equations we have that $16 k+48=0 \Leftrightarrow k=-3$. This implies that $r^{2}=25 \Rightarrow r=5$.

Answer: 5
6. Find $\int_{-3}^{3}\left(\frac{\sin x}{\ln \left(5+x^{2}\right)}+\frac{1}{x+5}\right) d x$.

Solution: We notice that the function $f(x)=\frac{\sin x}{\ln \left(5+x^{2}\right)}$ is an odd function. That is, $f(-x)=-f(x)$, for all x. If we denote the integral $\int_{-3}^{3} \frac{\sin x}{\ln \left(5+x^{2}\right)} d x$ with I and we make the substitution $u=-x$, we get that $I=-I \Leftrightarrow I=0$. Therefore, our initial integral is equal to

$$
\int_{-3}^{3} \frac{1}{x+5} d x=\left.\ln (x+5)\right|_{-3} ^{3}=\ln 8-\ln 2=\ln 4=2 \ln 2
$$

Answer: $\ln 4$ or $2 \ln 2$
7. Determine m such that the polynomial $P(x)=2 x^{29}+x^{23}+x^{12}+m x^{11}+x^{8}+5 x^{6}+x^{2}+2$ is divisible by the polynomial $x^{4}+x^{3}+x^{2}+x+1$.
Solution: Let c be a root of $x^{4}+x^{3}+x^{2}+x+1$. Then $c^{4}+c^{3}+c^{2}+c+1=0$ which implies that

$$
(c-1)\left(c^{4}+c^{3}+c^{2}+c+1\right)=c^{5}-1=0 \Rightarrow c^{5}=1 .
$$

If $P(x)$ is divisible by $x^{4}+x^{3}+x^{2}+x+1$, then $P(c)=0$. We have that

$$
\begin{aligned}
P(c) & =2 c^{29}+c^{23}+c^{12}+m c^{11}+c^{8}+5 c^{6}+c^{2}+2=2 c^{4}+c^{3}+c^{2}+m c+c^{3}+5 c+c^{2}+2 \\
& =2 c^{4}+2 c^{3}+2 c^{2}+(m+5) c+2=2\left(c^{4}+c^{3}+c^{2}+c+1\right)+(m+3) c=(m+3) c .
\end{aligned}
$$

Therefore, $(m+3) c=0$ which implies that $m=-3$ since $c \neq 0$.
Answer: $m=-3$
8. Find the sum

$$
\ln \left(1+\frac{1}{2}\right)+\ln \left(1+\frac{1}{3}\right)+\ln \left(1+\frac{1}{4}\right)+\cdots+\ln \left(1+\frac{1}{2022}\right) .
$$

Solution: We have that

$$
\ln \left(1+\frac{1}{n}\right)=\ln \left(\frac{n+1}{n}\right)=\ln (n+1)-\ln n,
$$

for any positive integer n. So we get that

$$
\begin{aligned}
& \ln \left(1+\frac{1}{2}\right)+\ln \left(1+\frac{1}{3}\right)+\ln \left(1+\frac{1}{4}\right)+\cdots+\ln \left(1+\frac{1}{2022}\right)= \\
& (\ln 3-\ln 2)+(\ln 4-\ln 3)+(\ln 5-\ln 4)+\cdots+(\ln (2023)-\ln (2022))= \\
& \ln (2023)-\ln 2=\ln \left(\frac{2023}{2}\right) .
\end{aligned}
$$

Answer: $\ln \left(\frac{2023}{2}\right)$
9. Let $f(x)$ be a one-to-one function such that $f(1)=4, f(3)=1, f^{\prime}(1)=-4$, and $f^{\prime}(3)=2$. If $g(x)=f^{-1}(x)$ is the inverse function of $f(x)$, find the slope of the tangent line to the graph of $\frac{1}{g(x)}$ at $x=1$.
Solution: The derivative of $\frac{1}{g(x)}$ is $-\frac{g^{\prime}(x)}{(g(x))^{2}}$, so the slope of the tangent line is $-\frac{g^{\prime}(1)}{(g(1))^{2}}$. Since $f(3)=1$, we get that $g(1)=3$ and $g^{\prime}(1)=\frac{1}{f^{\prime}(g(1))}=\frac{1}{f^{\prime}(3)}=\frac{1}{2}$. Therefore, the slope of the tangent line is $-\frac{1}{18}$.

Answer: $-\frac{1}{18}$
10. Find $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sqrt{n^{2}-k^{2}}}{n^{2}}$.

Solution: We notice that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\sqrt{n^{2}-k^{2}}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1-\left(\frac{k}{n}\right)^{2}}=\int_{0}^{1} \sqrt{1-x^{2}} d x .
$$

The graph of $y=\sqrt{1-x^{2}}, x \in[0,1]$ is the quarter from the first quadrant of the circle with center at the origin and radius 1 . So, $\int_{0}^{1} \sqrt{1-x^{2}} d x=\frac{\pi}{4}$.

Answer: $\frac{\pi}{4}$
11. Find x such that $(\sqrt[7]{5 \sqrt{2}+7})^{x}-(\sqrt[7]{5 \sqrt{2}-7})^{x}=140 \sqrt{2}$.

Solution: Let $(\sqrt[7]{5 \sqrt{2}+7})^{x}=y$. Since $(5 \sqrt{2}+7)(5 \sqrt{2}-7)=1$, our equation becomes $y-\frac{1}{y}-140 \sqrt{2}=0$ which is equivalent to $y^{2}-140 \sqrt{2} y-1=0$. This quadratic equation has solutions $y=70 \sqrt{2} \pm 99$ and from the fact that $y>0$ we get that $y=70 \sqrt{2}+99=(5 \sqrt{2}+7)^{2}$. Therefore, $\frac{x}{7}=2 \Leftrightarrow x=14$.
Answer: 14
12. Find the 2022th derivative of $f(x)=\sin ^{4} x+\cos ^{4} x$.

Solution: We see that

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{4} x+\cos ^{4} x\right) & =4 \sin ^{3} x \cos x-4 \cos ^{3} x \sin x=4 \sin x \cos x\left(\sin ^{2} x-\cos ^{2} x\right) \\
& =-2 \sin (2 x) \cos (2 x)=-\sin (4 x)
\end{aligned}
$$

Since the 2021th derivative of $\sin x$ is $\cos x$, we get that the 2022th derivative of $f(x)$ is $-4^{2021} \cos (4 x)$.
Answer: $-4^{2021} \cos (4 x)$
13. Let $f(x)$ be a differentiable function such that

$$
f(x)=x^{2}+\int_{0}^{x} e^{-t} f(x-t) d t
$$

for all real numbers x. Find $f(6)$.

Solution: We notice that $f(0)=0$. If we make the substitution $u=x-t$ we get that

$$
\begin{aligned}
f(x) & =x^{2}-\int_{x}^{0} e^{u-x} f(u) d u \\
& =x^{2}+e^{-x} \int_{0}^{x} e^{u} f(u) d u \Leftrightarrow \\
e^{x} f(x) & =x^{2} e^{x}+\int_{0}^{x} e^{u} f(u) d u .
\end{aligned}
$$

If we differentiate both sides we obtain

$$
e^{x} f(x)+e^{x} f^{\prime}(x)=2 x e^{x}+x^{2} e^{x}+e^{x} f(x)
$$

which is equivalent to $f^{\prime}(x)=x^{2}+2 x$. This implies that $f(x)=\frac{1}{3} x^{3}+x^{2}+c$, and since $f(0)=0$ we get that $c=0$. Therefore, $f(x)=\frac{1}{3} x^{3}+x^{2}$ and $f(6)=108$.
Answer: 108
14. Consider the expression

$$
E(n)=\frac{1}{2 n+1}\binom{2 n}{0}-\frac{1}{2 n}\binom{2 n}{1}+\frac{1}{2 n-1}\binom{2 n}{2}+\cdots-\frac{1}{2}\binom{2 n}{2 n-1}+\binom{2 n}{2 n},
$$

where n is a positive integer. Find $E(2022)$.
Solution: We know that

$$
(x-1)^{2 n}=\binom{2 n}{0} x^{2 n}-\binom{2 n}{1} x^{2 n-1}+\cdots-\binom{2 n}{2 n-1} x+\binom{2 n}{2 n}
$$

If we integrate both sides on $[0,1]$ we get

$$
\left.\frac{(x-1)^{2 n+1}}{2 n+1}\right|_{0} ^{1}=\left.\binom{2 n}{0} \frac{x^{2 n+1}}{2 n+1}\right|_{0} ^{1}-\left.\binom{2 n}{1} \frac{x^{2 n}}{2 n}\right|_{0} ^{1}+\cdots-\left.\binom{2 n}{2 n-1} \frac{x^{2}}{2}\right|_{0} ^{1}+\left.\binom{2 n}{2 n} x\right|_{0} ^{1},
$$

which implies that $E(n)=\frac{1}{2 n+1}$. Therefore, $E(2022)=\frac{1}{4045}$
Answer: $\frac{1}{4045}$
15. Find the sum of all solutions $\theta \in\left[0, \frac{\pi}{2}\right]$ of the equation

$$
\frac{\sin 2 \theta+\sin 4 \theta+\sin 6 \theta+\sin 8 \theta}{\cos 2 \theta+\cos 4 \theta+\cos 6 \theta+\cos 8 \theta}=1 .
$$

Solution: We obtain first the following identity

$$
\frac{(\sin 2 \theta+\sin 8 \theta)+(\sin 4 \theta+\sin 6 \theta)}{(\cos 2 \theta+\cos 8 \theta)+(\cos 4 \theta+\cos 6 \theta)}=\frac{2 \sin 5 \theta \cos 3 \theta+2 \sin 5 \theta \cos \theta}{2 \cos 5 \theta \cos 3 \theta+2 \cos 5 \theta \cos \theta}=\frac{2 \sin 5 \theta(\cos 3 \theta+\cos \theta)}{2 \cos 5 \theta(\cos 3 \theta+\cos \theta)}=\tan 5 \theta .
$$

So our equation becomes $\tan 5 \theta=1$ and since $5 \theta \in\left[0, \frac{5 \pi}{2}\right]$ we get that 5θ is equal to $\frac{\pi}{4}$ or $\frac{5 \pi}{4}$ or $\frac{9 \pi}{4}$.
Therefore, the solutions of the equation in $\left[0, \frac{\pi}{2}\right]$ are $\frac{\pi}{20}, \frac{5 \pi}{20}$, and $\frac{9 \pi}{20}$ and their sum is $\frac{15 \pi}{20}=\frac{3 \pi}{4}$.
Answer: $\frac{3 \pi}{4}$
16. Find $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2022}\right)-(\sin x)^{2022}}{x^{2024}}$.

Solution: We use the Taylor expansion $\sin x=x-\frac{x^{3}}{6}+o\left(x^{3}\right)$.

$$
\sin \left(x^{2022}\right)=x^{2022}-\frac{x^{6066}}{6}+o\left(x^{6066}\right) .
$$

and using also the binomial formula:
$(\sin x)^{2022}=\left(x-\frac{x^{3}}{6}+o\left(x^{3}\right)\right)^{2022}=x^{2022}-\frac{2022}{6} x^{2021} x^{3}+O\left(x^{2020} x^{6}\right)=x^{2022}-337 x^{2024}+o\left(x^{2024}\right)$.
Therefore $\frac{\sin \left(x^{2022}\right)-(\sin x)^{2022}}{x^{2024}}=\frac{337 x^{2024}+o\left(x^{2024}\right)}{x^{2024}} \underset{x \rightarrow 0}{ } 337$.
Answer: 337
17. Consider the sequence $\left\{a_{n}\right\}$ where $a_{n}=\sum_{k=1}^{n} \frac{k^{2}+k}{n^{3}+k}$ for every positive integer n. Find $\lim _{n \rightarrow \infty} a_{n}$.

Solution: Let $b_{n}=\sum_{k=1}^{n} \frac{k^{2}+k}{n^{3}}$ and $c_{n}=\sum_{k=1}^{n} \frac{k^{2}+k}{n^{3}+n}$. We see that $c_{n} \leq a_{n} \leq b_{n}$ for every positive integer n. Next we find the limits of $\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$. We have that

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{k=1}^{n}\left(k^{2}+k\right)=\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right]=\frac{1}{3}
$$

and

$$
\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \frac{1}{n^{3}+n} \sum_{k=1}^{n}\left(k^{2}+k\right)=\lim _{n \rightarrow \infty} \frac{1}{n^{3}+n}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right]=\frac{1}{3} .
$$

By the Squeeze Theorem, we get that $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{3}$.
Answer: $\frac{1}{3}$
18. Let $a_{n}=\int_{\frac{1}{n+1}}^{\frac{1}{n}} \arctan (n x) d x$ and $b_{n}=\int_{\frac{1}{n+1}}^{\frac{1}{n}} \arcsin (n x) d x$. Find $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.

Solution: From the Mean Value Theorem for integrals we know that there exists x_{n} between $\frac{1}{n+1}$ and $\frac{1}{n}$ such that

$$
a_{n}=\arctan \left(n x_{n}\right)\left(\frac{1}{n}-\frac{1}{n+1}\right) .
$$

The function $\arctan x$ is increasing, so we have that

$$
\begin{gathered}
\arctan \left(\frac{n}{n+1}\right) \frac{1}{n(n+1)}<a_{n}<\arctan \left(\frac{n}{n}\right) \frac{1}{n(n+1)} \Leftrightarrow \\
\arctan \left(\frac{n}{n+1}\right)<n(n+1) a_{n}<\arctan 1 .
\end{gathered}
$$

By the Squeeze Theorem, we obtain that $\lim _{n \rightarrow \infty} n(n+1) a_{n}=\arctan 1=\frac{\pi}{4}$. Similarly, $\lim _{n \rightarrow \infty} n(n+1) b_{n}=$ $\arcsin 1=\frac{\pi}{2}$. Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{2}$.
Answer: $\frac{1}{2}$
19. Evaluate the integral

$$
I=\int_{0}^{1} \frac{\sin ^{2}\left(\frac{\pi x^{2}}{2}\right)}{\sqrt{1-x^{2}}} d x
$$

Solution: First we substitute $x=\sin \theta$ to get that

$$
I=\int_{0}^{\pi / 2} \sin ^{2}\left(\frac{\pi}{2} \sin ^{2} \theta\right) d \theta
$$

Then we make the substitution $\alpha=\frac{\pi}{2}-\theta$ to write the integral as

$$
I=\int_{0}^{\pi / 2} \sin ^{2}\left(\frac{\pi}{2} \cos ^{2} \alpha\right) d \alpha=\int_{0}^{\pi / 2} \sin ^{2}\left(\frac{\pi}{2} \cos ^{2} \theta\right) d \theta
$$

From here we notice that

$$
I=\int_{0}^{\pi / 2} \sin ^{2}\left(\frac{\pi}{2} \cos ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2} \sin ^{2}\left(\frac{\pi}{2}-\frac{\pi}{2} \sin ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2} \cos ^{2}\left(\frac{\pi}{2} \sin ^{2} \theta\right) d \theta
$$

Therefore, we have

$$
2 I=\int_{0}^{\pi / 2} \sin ^{2}\left(\frac{\pi}{2} \sin ^{2} \theta\right) d \theta+\int_{0}^{\pi / 2} \cos ^{2}\left(\frac{\pi}{2} \sin ^{2} \theta\right) d \theta=\int_{0}^{\pi / 2} d \theta=\frac{\pi}{2}
$$

which implies that $I=\frac{\pi}{4}$.
Answer: $\frac{\pi}{4}$
20. A dart is thrown at (and hits) a square dartboard. Assuming each spot on the dartboard has an equal chance of being hit, find the probability that the dart lands at a point closer to the center of the board than any of the edges. Express your answer in the form $\frac{a+b \sqrt{c}}{d}$, where a, b, c and d are integers.
Solution: Position the square such that the vertices are at $(\pm 1, \pm 1)$. Two diagonals divide the square into 4 triangles. By symmetry consider the triangle whose vertices are $(-1,1),(0,0)$, and $(1,1)$. The dart must hit a point (x, y) such that $\sqrt{x^{2}+y^{2}} \leq 1-y$ which is equivalent to $y \leq \frac{1}{2}\left(1-x^{2}\right)$. Since the triangle has area 1, the probability is equal to the area between the graphs of $y=\frac{1}{2}\left(1-x^{2}\right)$ and $y=|x|$, which intersect at points with x-coordinates $\pm(\sqrt{2}-1)$. Both functions are even, so the area is

$$
\begin{aligned}
& 2 \int_{0}^{\sqrt{2}-1} \frac{1}{2}\left(1-x^{2}-2 x\right) d x=\left.\left(x-\frac{x^{3}}{3}-x^{2}\right)\right|_{0} ^{\sqrt{2}-1} \\
& (\sqrt{2}-1)-\frac{1}{3}(2 \sqrt{2}-6+3 \sqrt{2}-1)-(2-2 \sqrt{2}+1)=\frac{-5+4 \sqrt{2}}{3}
\end{aligned}
$$

Answer: $\frac{-5+4 \sqrt{2}}{3}$

