2023 Power Team Solutions
 Texas A\&M High School Students Contest

November 2023
Problem 1 The city map is an infinite square grid of streets: horizontal lines are streets that go in the east-west direction, and vertical lines are streets that go in the north-south direction. A car A starts at the point $(0,0)$ and turns north or east on each crossing with probability $1 / 2$. A car B starts at the point $(n, m), n, m>0$, and turns south or west on each crossing with probability $1 / 2$.

The speeds of the cars are equal and they start simultaneously. Find the probability of the event that they meet, i.e., appear at the same crossing simultaneously.

You get bonus points (up to a half of the value of the problem) if you find the simplest possible expression for the answer in terms of the binomial coefficients.

Solution Note that the meeting point (k, l) is $k+l$ blocks away from $(0,0)$ and $(n+m-k-l)$ blocks away from (n, m). Thus we must have $k+l=(n+m) / 2$;. If $n+m$ is odd, this is not an integer and thus the probability is zero. Assume that $n+m$ is even. Assume that $n \geq m$; possible meeting points (k, l) satisfy $k+l=(n+m) / 2$ where k is in the range $(n-m) / 2 \leq k \leq(n+m) / 2$.

The number of possible routes from $(0,0)$ to (k, l) for the car A is $\binom{k+l}{k}=$ $\binom{(n+m) / 2}{k}$. The number of possible routes for the car B is $\binom{n+m-k-l}{n-k}=$ $\binom{(n+m) / 2}{n-k}$. The total number of routes of length $(n+m) / 2$ for each car is $2^{(n+m) / 2}$. So the probability for the cars to meet at (k, l) is

$$
2^{-(n+m)}\binom{(n+m) / 2}{k}\binom{(n+m) / 2}{n-k}
$$

and the total probability to meet somewhere on the diagonal $k+l=(n+m) / 2$ is

$$
2^{-(n+m)} \sum_{k=(n-m) / 2}^{k=(n+m) / 2}\binom{(n+m) / 2}{k}\binom{(n+m) / 2}{n-k} .
$$

We can simplify this formula in the following way. Consider all possible routes that go north-east and join $(0,0)$ to (n, m). We have $\binom{n+m}{n}$ such
routes, and each passes through one of the points with $k+l=(n+m) / 2$. So we can turn each route into a pair of routes that join $(0,0)$ and (n, m) to (k, l). Vice versa, if we have a pair of routes for the cars that meet at (k, l), we can unite them into a single route from $(0,0)$ to (n, m). Thus we have

$$
\sum_{k=(n-m) / 2}^{k=(n+m) / 2}\binom{(n+m) / 2}{k}\binom{(n+m) / 2}{n-k}=\binom{n+m}{n} .
$$

Answer: $2^{-(n+m)}\binom{n+m}{n}$ if $n+m$ is even; 0 otherwise.
Problem 2 The town map is a grid of streets $3 m \times m$ (there are $m+1$ streets that go in the east-west direction, and $3 m+1$ streets that go in the north-south direction). Two cars A and B start at the points (0,0) and $(3 m, m)$, respectively, and move in the same way as in the previous problem, with one additional rule: if the car A reaches the northern edge of the grid, it turns to the east and continues to the east (without additional turns); if the car B reaches the southern edge, it turns to the west and continues to the west ((without additional turns).

Find the probability of the event that they meet.
You get bonus points (up to a half of the value of the problem) if you find the simplest possible expression for the answer in terms of the binomial coefficients.

Solution Below we will use the well-known identities for binomial coefficients, $\binom{n}{k}=\binom{n}{n-k}$ and $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.

Similarly to the previous item, the cars will meet at a point (k, l) with $k+l=(3 m+m) / 2=2 m, m \leq k \leq 2 m$. Let the car A travel $2 m$ blocks, and let us compute the probability for the car A to get from 0 to (k, l). If $(k, l) \neq(m, m)$, the car does not reach the top or the rightmost edge of the grid on its way, thus the probability is the same as in the previous item ${ }^{1}$, $p_{k, l}=2^{-2 m}\binom{2 m}{k}$. Since the total probability is 1 , the probability for the car

[^0]A to get to the remaining intersection (m, m) is
\[

$$
\begin{array}{r}
p_{m, m}=1-\sum_{k=m+1}^{2 m} p_{k, 2 m-k}=1-\sum_{k=m+1}^{2 m} 2^{-2 m}\binom{2 m}{k}=\sum_{k=0}^{m} 2^{-2 m}\binom{2 m}{k}= \\
2^{-2 m}\binom{2 m}{m}+\sum_{k=0}^{m-1} 2^{-2 m}\binom{2 m}{k} .
\end{array}
$$
\]

We separated away the first summand that is the same as in the previous item; the rest of the sum is a new addition.

Similarly, the probability for the car B to get from $(m, 3 m)$ to (k, l) is $q_{k, l}=2^{-2 m}\binom{2 m}{3 m-k}$ if $(k, l) \neq(2 m, 0)$; the probability to get to $(2 m, 0)$ is $q_{2 m, 0}=p_{m, m}$, due to the symmetry of the picture with respect to the point $(3 m / 2, m / 2)$.

Thus the probability that the cars meet is

$$
\begin{aligned}
& \quad \sum_{k=m}^{k=2 m} p_{k, 2 m-k} q_{k, 2 m-k}= \\
& 2^{-4 m} \sum_{k=m}^{k=2 m}\binom{2 m}{k}\binom{2 m}{3 m-k}+\sum_{k=0}^{m-1} 2^{-2 m}\binom{2 m}{k} \cdot q_{m, m}+\sum_{k=0}^{m-1} 2^{-2 m}\binom{2 m}{k} \cdot p_{2 m, 0} .
\end{aligned}
$$

The first part is same as in the previous item for $n=3 m$, and is simplified in the same way as before. The last two summands are new. Since $q_{m, m}=$ $p_{2 m, 0}=2^{-2 m}$, the last two summands equal
$2^{-4 m}\left(\sum_{k=0}^{m-1}\binom{2 m}{k}+\sum_{k=0}^{m-1}\binom{2 m}{k}\right)=2^{-4 m}\left(2^{2 m}-\binom{2 m}{m}\right)=2^{-2 m}-2^{-4 m}\binom{2 m}{m}$.
Answer:

$$
2^{-4 m}\binom{4 m}{m}+2^{-2 m}-2^{-4 m}\binom{2 m}{m} .
$$

In all problems below the taxicab distance between points A, B with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $d(A, B)=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

Problem 3 Suppose that the points $A=(0,0), B=\left(b_{1}, b_{2}\right)$ satisfy $b_{1}, b_{2} \geq 0$. Describe the locus of points C such that $d(A, C)=d(C, B)$ (the "taxicab perpendicular bisector" to $A B$).

Solution The condition for the point $C=(x, y)$ is $|x|+|y|=\left|x-b_{1}\right|+$ $\left|y-b_{2}\right|$. We have the following cases.

Degenerate case: If $b_{1}=0$ and $b_{2}=0, C$ is an arbitrary point on the plane. If $b_{1}=0$ and $b_{2}>0$, i.e., $A B$ is vertical, we get that x is arbitrary and $|y|=\left|y-b_{2}\right|$, i.e., $y=b_{2} / 2: C$ is located on the perpendicular bisector to $A B$. The case of horizontal $A B$ is analogous.

Non-degenerate case: Suppose that $A B$ is not horizontal or vertical. Assume $b_{2} \leq b_{1}$, i.e., the angle between $A B$ and the horizontal line is not greater than 45°. If this is not true, we can reflect the configuration over $x=y$.

The condition on the point $C=(x, y)$ is given by $|x|+|y|=\left|x-b_{1}\right|+$ $\left|y-b_{2}\right|$.

III			

Divide the plane into nine pieces as shown, by the lines $x=0, y=0, x=$ $b_{1}, y=b_{2}$. In each of the nine pieces, we get:

I If $x \leq 0, y \leq 0:-x-y=b_{1}-x+b_{2}-y$ is equivalent to $b_{1}+b_{2}=0$ which is not true.

II If $x \leq 0,0<y<b_{2}:-x+y=b_{1}-x+b_{2}-y$ is equivalent to $y=\frac{b_{1}+b_{2}}{2}$. However, this cannot be less than b_{2} since $b_{2} \leq b_{1}$. Thus C cannot be in this domain.

III If $x \leq 0, y \geq b_{2}:-x+y=b_{1}-x+y-b_{2}$ is equivalent to $b_{1}=b_{2}$. So for $b_{1}=b_{2}$, the point C can be anywhere in this domain, and if $b_{1} \neq b_{2}$, no points C can be here.

IV If $0<x \leq b_{1}, y \leq 0: x-y=b_{1}-x+b_{2}-y$ is equivalent to $x=\frac{1}{2}\left(b_{1}+b_{2}\right)$. This is, indeed, smaller than b_{1} since $b_{2} \leq b_{1}$. So the set of possible points C is the vertical ray $x=\frac{1}{2}\left(b_{1}+b_{2}\right), y \leq 0$.

V If $0<x \leq b_{1}, 0<y \leq b_{2}: x+y=b_{1}-x+b_{2}-y$, i.e., $x+y=\frac{1}{2}\left(b_{1}+\right.$ b_{2}). This is the line with slope -1 that passes through the midpoint $\left(b_{1} / 2, b_{2} / 2\right)$ of $A B$. Note that this line joins the endpoints of the rays from domain $I V$ and domain $V I$ (see below).

VI If $0<x \leq b_{1}, y>b_{2}: x+y=b_{1}-x+y-b_{2}$ is equivalent to $x=\frac{1}{2}\left(b_{1}-b_{2}\right)$. The set of possible C is the ray $x=\frac{1}{2}\left(b_{1}-b_{2}\right), y>b_{2}$.
VII If $x>b_{1}, y \leq 0: x-y=x-b_{1}+b_{2}-y$ is equivalent to $b_{1}=b_{2}$. So for $b_{1}=b_{2}$, the point C can be anywhere in this domain, and if $b_{1} \neq b_{2}$, no points C can be here.

VIII If $x>b_{1}, 0<y<b_{2}: x+y=x-b_{1}+b_{2}-y$ is equivalent to $y=\frac{1}{2}\left(b_{2}-b_{1}\right)$, but this expression is non-positive since $b_{1} \geq b_{2}$. So no points C can be here.

IX If $x>b_{1}, y \geq b_{2}: x+y=x-b_{1}+y-b_{2}$ is equivalent to $b_{1}+b_{2}=0$ which is not true.

Answer:

- If $b_{1}=b_{2}=0, C$ is arbitrary.
- If $b_{1}=0, b_{2}>0$ or $b_{1}>0, b_{2}=0, C$ belongs to the perpendicular bisector of $A B$.
- For $b_{1}>b_{2}$, the set of possible points C is formed by two rays $x=$ $\frac{1}{2}\left(b_{1}+b_{2}\right), y \leq 0$ and $x=\frac{1}{2}\left(b_{1}-b_{2}\right), y \geq b_{2}$, and the segment that joins their endpoints $x+y=\frac{1}{2}\left(b_{1}+b_{2}\right), 0<x<b_{1}, 0<y<b_{2}$.

- For $b_{1}=b_{2}$, the set of possible points C is formed by two quadrants $x \leq 0, y \geq b_{2}$ and $x \geq b_{1}, y \leq 0$ and the segment $x+y=\frac{1}{2}\left(b_{1}+b_{2}\right)$ that joins their corners. Note that in this case, the rays from domains $I V$ and $V I$ are located on the borders of these quadrants;

- For $b_{1}<b_{2}$, the case is reduced to the case $b_{1}>b_{2}$ by swapping x and y. So the set of possible points C is formed by two rays $y=\frac{1}{2}\left(b_{1}+b_{2}\right), x \leq 0$ and $y=\frac{1}{2}\left(b_{2}-b_{1}\right), x \geq b_{1}$, and the segment that joins their endpoints $x+y=\frac{1}{2}\left(b_{1}+b_{2}\right), 0<x<b_{1}, 0<y<b_{2}$.

Problem 4 Given two points A, B above the line $y=k x, 0<k<1$, find all points C on the line $y=k x$ such that the distance $d(A, C)+d(B, C)$ is as small as possible.

Solution Let $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$; assume that $a_{2} \leq b_{2}$, otherwise we swap A and B.

Consider the lines $x=a_{1}, x=b_{1}, y=a_{2}, y=b_{2}$. The pictures show possible cases for the location of the line $y=k x$ with respect to these lines, namely:

Case 1: $a_{1} \leq b_{1}, a_{2} \leq k b_{1}$. Then the line $y=k x$ intersects the rectangle $a_{1} \leq x \leq b_{1}, a_{2} \leq x \leq b_{2}$ over the segment $\left[C_{1}, C_{2}\right]$ with $C_{1}=\left(a_{2} / k, a_{2}\right)$ and $C_{2}=\left(b_{1}, k b_{1}\right)$.

In this rectangle, $\operatorname{dist}(C, A)+\operatorname{dist}(C, B)=\left|x-a_{1}\right|+\left|y-a_{2}\right|+\mid x-$ $b_{1}\left|+\left|y-b_{2}\right|=\left(x-a_{1}\right)+\left(y-a_{2}\right)+\left(b_{1}-x\right)+\left(b_{2}-y\right)=\operatorname{dist}(A, B)\right.$. Outside this rectangle, one of the inequalities $\left|x-a_{1}\right|+\left|x-b_{1}\right| \geq\left|a_{1}-b_{1}\right|$ or $\left|y-a_{2}\right|+\left|y-b_{2}\right| \geq\left|a_{2}-b_{2}\right|$ is strict, thus $\operatorname{dist}(C, A)+\operatorname{dist}(C, B)>\operatorname{dist}(A, B)$. Thus the set of points on $y=k x$ with the minimum possible total distance to A, B is the interval $\left[C_{1}, C_{2}\right]$.

Case 2: either $a_{2} / k>b_{1} \geq a_{1}$ or $a_{1}>b_{1}$ (in the latter case $a_{2}>k a_{1}$ since A is above $y=k x$ and thus we have $\left.a_{2} / k>a_{1}>b_{1}\right)$. Here the line $y=k x$ does not intersect this rectangle.

Let $C=(x, k x)$ and consider the function $\operatorname{dist}(C, A)+\operatorname{dist}(C, B)=$ $\left|x-a_{1}\right|+\left|k x-a_{2}\right|+\left|b_{1}-x\right|+\left|b_{2}-k x\right|$.

Note that the function $\left|x-a_{1}\right|+\left|b_{1}-x\right|$ decreases to the left from the interval $I=\left[a_{1}, b_{1}\right]$ (or $\left[b_{1}, a_{1}\right]$ if $b_{1}>a_{1}$), is constant on I, and increases to the right from I. The function $\left|k x-a_{2}\right|+\left|b_{2}-k x\right|$ decreases to the left from the interval $J=\left[a_{2} / k, b_{2} / k\right]$, is constant on J, and increases to the right from J. The interval I is to the left from the interval J and does not intersect it since $a_{2} / k>\max \left(a_{1}, b_{1}\right)$. Thus the sum of these functions will
decrease for $x<\max \left(a_{1}, b_{1}\right)$ (where either both functions decrease or one is constant and the other decreases), and similarly, the sum increases for $x>a_{2} / k$. We conclude that the minimum of the function must be on the interval $\max \left(a_{1}, b_{1}\right) \leq x \leq a_{2} / k$ between I and J.

On this interval, $\operatorname{dist}(C, A)+\operatorname{dist}(C, B)=2 x-a_{1}-b_{1}+a_{2}+b_{2}-2 k x$. This expression grows with x since $0<k<1$, thus it takes its minimum at the leftmost point $x=\max \left(a_{1}, b_{1}\right), y=k x$.

Answer: if $a_{2} / k \leq b_{1}$ - the interval $a_{2} / k \leq x \leq b_{1}, y=k x$;
if $a_{2} / k>\max \left(a_{1}, b_{1}\right)$, the point $C=\left(\max \left(a_{1}, b_{1}\right), k \max \left(a_{1}, b_{1}\right)\right)$.
Problem 5 Suppose that a triangle $A B C$ is taxicab equilateral: $d(A, B)=$ $d(B, C)=d(C, A)$. Show that one of the sides of $A B C$ is vertical, horizontal, or has a slope ± 1.

Solution Suppose that the side $A B$ is not horizontal or vertical and does not have slope ± 1. Let $A=(0,0)$ and assume that $B=\left(b_{1}, b_{2}\right)$ satisfies $b_{1}, b_{2}>0$ and $b_{1}>b_{2}$. We can always achieve this by placing the origin at the leftmost vertex A and relecting the configuration with respect to $x=0, y=0$, and $x=y$.

Then C is located on the perpendicular bisector to the $A B$, namely on the union of the rays $x=\frac{1}{2}\left(b_{1}+b_{2}\right), y<0, x=\frac{1}{2}\left(b_{1}-b_{2}\right), y>b_{2}$ and a segment $x+y=\frac{1}{2}\left(b_{1}+b_{2}\right), 0<x<b_{1}, 0<y<b_{2}$. On this segment, the taxicab distance to A and B is $\frac{1}{2}\left(b_{1}+b_{2}\right)$; since the distance $\operatorname{dist}(A, C)$ should be equal to $\operatorname{dist}(A, B)=b_{1}+b_{2}, C$ cannot be on this segment and must be on one of the rays. We find that C is either $C_{1}=\left(\frac{1}{2}\left(b_{1}+b_{2}\right),-\frac{1}{2}\left(b_{1}+b_{2}\right)\right)$ or $C_{2}=\left(\frac{1}{2}\left(b_{1}-b_{2}\right), \frac{1}{2}\left(b_{1}+3 b_{2}\right)\right)$. In both cases, $A C$ or $B C$ has slope ± 1.

Problem 6 For a taxicab equilateral triangle $A B C$,

1. prove that there always exists a point O such that $d(O, A)=d(O, B)=$ $d(O, C)$, i.e., we can always inscribe an equilateral triangle in a taxicab circle;
2. Provide an example of a taxicab equilateral triangle such that a point O with this property is not unique.

Solution (contains simultaneously solutions of both items) Special case. Suppose that all segments $A B, B C, A C$ are horizontal, vertical, or have slopes ± 1. Thus $A B C$ is a right triangle with sides parallel to $x=0, y=0, x=y$.

If only one side has a slope ± 1, the triangle is not equilateral. E.g., if $A B$ is horizontal and $A C$ is vertical, with $A=(0,0), B=(b, 0), C=(0, b)$, the distance $\operatorname{dist}(B, C)$ is $2 b$ and not b.

The only possible case is when both $A B$ and $B C$ have slopes ± 1. Reflecting over $x= \pm y$ if necessary, we will assume that $A=(-a, 0), B=(0, a)$, $C=(a, 0)$. Then any point with $y=0, x \leq 0$ satisfies $\operatorname{dist}(A, O)=$ $\operatorname{dist}(B, O)=\operatorname{dist}(C, O)=|x|+a$, thus there are infinitely many points O with required property. This proves that O exists and provides an example when it is non-unique, so completes item (b).

General case. Suppose that the triangle $A B C$ has a side that is not vertical, not horizontal, and its slope is not ± 1. Let this side be $A B$. As in the previous problem, set $A=(0,0)$ and $B=\left(b_{1}, b_{2}\right)$ with $b_{1}>b_{2}$; we have determined that C should be $C_{1}=\left(\frac{1}{2}\left(b_{1}+b_{2}\right),-\frac{1}{2}\left(b_{1}+b_{2}\right)\right)$ or $C_{2}=\left(\frac{1}{2}\left(b_{1}-b_{2}\right), \frac{1}{2}\left(b_{1}+3 b_{2}\right)\right)$. The two points are symmetric with respect to the middle of $A B$, thus it is sufficient to consider the first case $C=$ $\left(\frac{1}{2}\left(b_{1}+b_{2}\right),-\frac{1}{2}\left(b_{1}+b_{2}\right)\right)$.

It is easy to see that the point $O=\left(\frac{1}{2}\left(b_{1}+b_{2}\right), 0\right)$ will satisfy the equalities $\operatorname{dist}(A, O)=\operatorname{dist}(B, O)=\operatorname{dist}(C, O)$. Thus such point exists. One can check that it is unique in this case, but this was not required in the problem.

Thus in the non-degenerate case, the point O exists and is unique.

Problem 7 Describe all triangles $A B C$ such that we cannot inscribe $A B C$ in a taxicab circle, i.e., there is no point O with the property $d(O, A)=$ $d(O, B)=d(O, C)$.

Solution Call a segment $A B$ "almost horizontal" if its slope is between -1 and 1 , and "almost vertical" otherwise.

Answer: if all segments $A B, B C, A C$ are almost vertical, then O does not exist. If all these segments are almost horizontal, then O does not exist as well. In all other cases, O exists.

Indeed, Problem 3 implies that the taxicab perpendicular bisector of any almost horizontal segment $A B$ is formed by two vertical rays and the slanted segment that joins their endpoints (this slanted segment degenerates into a point if $A B$ is horizontal). Similarly, the taxicab perpendicular bisector of any almost vertical segment is formed by two horizontal rays and the slanted segment that joins their endpoints.

So if $A B$ is almost vertical and $B C$ is almost horizontal, then their taxicab perpendicular bisectors must intersect. The intersection point O satisfies $\operatorname{dist}(A, O)=\operatorname{dist}(B, O)=\operatorname{dist}(C, O)$.

If $A B, B C$, or $A C$ has slope exactly 1 or -1 , the corresponding taxicab perpendicular bisector is a union of two quadrants and the segment that joins their corners. This set intersects all possible taxicab perpendicular bisectors. In this case, O will also exist.

Finally, assume that all segments $A B, B C, A C$ are almost horizontal. Assume that $A=(0,0)$ is the leftmost point, $B=\left(b_{1}, b_{2}\right)$, and $C=\left(c_{1}, c_{2}\right)$ is the rightmost point. Then the taxicab perpendicular bisector of $A B$ is contained in the strip $0<x<b_{1}$, and the taxicab perpendicular bisector of $B C$ is a contained in the strip $b_{1}<x<c_{1}$. Thus they do not intersect, and there cannot be a point O with $\operatorname{dist}(A, O)=\operatorname{dist}(B, O)=\operatorname{dist}(C, O)$.

The case when all segments $A B, B C, A C$ are almost vertical is considered in an analogous way.

Problem 8 Points $A_{1}, \ldots, A_{n}, n \geq 4$, satisfy the following: $1=d\left(A_{1}, A_{2}\right)=$ $d\left(A_{2}, A_{3}\right)=\cdots=d\left(A_{n}, A_{1}\right)$, and there exists a point O such that $d\left(O, A_{1}\right)=$ $d\left(O, A_{2}\right)=\cdots=d\left(O, A_{n}\right)=r$. Some of the points A_{k} may coincide. For every n, find the minimal possible value of r.

Solution

Answer: $r=1 / 2$
Note that for the taxicab distance, we have a version of the triangle inequality: $\operatorname{dist}(A, B)+\operatorname{dist}(B, C) \geq \operatorname{dist}(A, C)$. Indeed, we have for $A=$ $\left(x_{A}, y_{A}\right), B=\left(x_{B}, y_{B}\right), C=\left(x_{C}, y_{C}\right):$

$$
\left|x_{A}-x_{B}\right|+\left|y_{A}-y_{B}\right|+\left|x_{B}-x_{C}\right|+\left|y_{B}-y_{C}\right| \geq\left|x_{A}-x_{C}\right|+\left|y_{A}-y_{C}\right|
$$

due to the inequality $\left|x_{A}-x_{B}\right|+\left|x_{B}-x_{C}\right| \geq\left|x_{A}-x_{C}\right|$ and an analogous one for y.

Thus $1=d\left(A_{1}, A_{2}\right) \leq d\left(O, A_{1}\right)+d\left(O, A_{2}\right)=2 r$, i.e., $r \geq 1 / 2$.
To see that $r=1 / 2$ is possible, we will construct an example, separately for odd and for even n.

For even $n=2 k$, take $A_{1}=A_{3}=\ldots A_{2 k-1}=(0.5,0)$, and $A_{2}=A_{4}=$ $\ldots A_{2 k}=(-0.5,0)$, and $O=(0,0)$. It is easy to see that all conditions hold true.

For odd $n=2 k+1$, take $A_{1}=(0,0.5), A_{2}=A_{4}=\ldots A_{2 k}=(-0.5,1)$, $A_{3}=\ldots A_{2 k+1}=(0.5,0)$, and $O=(0,0)$. Since $\operatorname{dist}\left(A_{1}, A_{2}\right)=\operatorname{dist}\left(A_{2 k+1}, A_{1}\right)=$ 1 , all conditions still hold true.

Problem 9 For distinct points $A_{1}, \ldots, A_{n}, n \geq 4$, assume that the polygon $A_{1} \ldots A_{n}$ is non-self-intersecting and satisfies the same requirements as in Problem 8 . For every n, find the minimal possible value of r.

Solution

Answer: for $n=4 m$, we have $r=m / 2=n / 8$. For $n=4 m+k, k=$ $1,2,3$, we have $r=(m+1) / 2=(\lfloor n / 4\rfloor+1) / 2$.

Consider the set of points X such that $\operatorname{dist}(O, X)=1$ (the taxicab circle of radius 1). This set is given by $|x|+|y|=1$, and is thus a square with sides $x+y=1, x>0, y>0 ;-x+y=1, x<0, y>0 ; x-y=1, x>$ $0, y<0 ; x+y=-1, x<0, y<0$. Note that taxicab lengths of these segments are equal to $2 r$. Let K, L, M, N be vertices of this square. All points $A_{1}, A_{2}, \ldots, A_{n}$ are located on this taxicab circle, and since $A_{1} \ldots A_{n}$ is non-self-intersecting, they are numbered along the circle (either clock- or counterclockwise).

Put $n=4 m+k, k=0,1,2,3$.
Suppose that $\mathbf{k}=\mathbf{0}$. Applying the triangle inequality, we find that $8 r=\operatorname{dist}(K, L)+\operatorname{dist}(L, M)+\operatorname{dist}(M, N)+\operatorname{dist}(N, K) \geq \operatorname{dist}\left(A_{1}, A_{2}\right)+$ $\operatorname{dist}\left(A_{2}, A_{3}\right)+\cdots+\operatorname{dist}\left(A_{n}, A_{1}\right)=n$, thus $r \geq n / 8$.

To see that $r=n / 8$ is possible, place four vertices $A_{1}, A_{1+m}, A_{1+2 m}, A_{1+3 m}$ of the polygon at the vertices K, L, M, N of the taxicab circle of radius $r=$ $n / 8$ and distribute other points evenly along the taxicab circle. Then we have $2 r=\operatorname{dist}\left(A_{1}, A_{1+m}\right)=m=n / 4$ and $r=n / 8$.

Suppose that $k \neq 0, n>4$.
Then we can achieve $r=(\lfloor n / 4\rfloor+1) / 2=(m+1) / 2$. To see this, place $4 m+4$ points $A_{1}, \ldots, A_{4 m+4}$ along the taxicab circle of radius $r=(m+1) / 2$ in the same way as in the previous case, and then remove ($4-k$) of them from the vertices of the taxicab circle. The remaining $4 m+k$ points will satisfy the assumptions. Indeed, the points near the vertex of the taxicab circle have coordinates $(r-0.5,-0.5),(r, 0),(r-0.5,0.5)$, and all pairwise taxicab distances between them are 1 , so the conditions on the points A_{1}, \ldots, A_{n} will be still satisfied if we remove the vertex from $(r, 0)$.

Suppose that a smaller value of r is possible, and let us show that $n=$ $4 m+k$ points A_{1}, \ldots, A_{n} at distances 1 cannot fit along the taxicab circle of radius r. Since $2 r<m+1$, triangle inequality implies that the side of the taxicab circle (of taxicab length $2 r$) cannot contain $m+2$ or more points A_{j}. On the other hand, at least one side of the taxicab circle must contain at least $m+1$ points A_{j} since there are $4 m+k$ points in total. Consider the side $K L$ that contains exactly $m+1$ points A_{1}, \ldots, A_{m+1}. Since $2 r<m+1$,
the taxicab distances $\operatorname{dist}\left(K, A_{1}\right)$ and $\operatorname{dist}\left(A_{m+1}, L\right)$ are smaller than 1.
Now, show that $\operatorname{dist}\left(A_{m+1}, L\right)<1 \operatorname{implies} \operatorname{dist}\left(L, A_{m+2}\right)=1$. Indeed, suppose that $L=(0, r)$. We have $A_{m+1}=(a, r-a)$ with $a<0.5$. Then $A_{m+2}=(-b, r-b)$ satisfies $\operatorname{dist}\left(A_{m+1}, A_{m+2}\right)=1=a+b+|b-a|$. If $b \leq a$, this is at most $a+b+a-b=2 a<1$ and we get a contradiction. If $b>a$, we have $1=a+b+b-a$ and thus $b=1 / 2, \operatorname{dist}\left(L, A_{m+2}\right)=1$.

Since $2 r<m+1$, the side $L M$ contains at most m vertices of the polygon (not counting L if $A_{m+1}=L$).

Similarly, $\operatorname{dist}\left(A_{1}, K\right)<1$ implies that $\operatorname{dist}\left(K, A_{n}\right)=1$ and the side $N K$ contains at most m vertices of the polygon (not counting K if $A_{1}=K$).

If $2 r<m$, both $L M$ and $N K$ contain strictly less than m vertices, then the taxicab circle contains at most $(m+1)+(m-1)+(m-1)+(m+1)=4 m$ vertices and we get a contradiction.

Suppose that $m \leq 2 r<m+1$: then $L M$ and $N K$ contain exactly m vertices of the polygon, namely $A_{m+2}, \ldots, A_{2 m+1}$ and $A_{4 m+k}, A_{4 m+k-1}, \ldots, A_{3 m+k+1}$. Moreover, since $\operatorname{dist}\left(L, A_{m+1}\right)=1$, we have $\operatorname{dist}\left(A_{2 m+1}, M\right)<1$. This again implies that $\operatorname{dist}\left(M, A_{2 m+2}\right)=1$. Similarly, since $\operatorname{dist}\left(K, A_{4 m+k}\right)=1$, we have $\operatorname{dist}\left(A_{3 m+k+1}, N\right)<1$ and thus $\operatorname{dist}\left(N, A_{3 m+k}\right)=1$.

This is not possible: since $A_{2 m+2}$ and $A_{3 m+k}$ are located on the same side $M N$ at taxicab distances 1 from its endpoints and the taxicab distance between $A_{2 m+2}$ and $A_{3 m+k}$ is $m+k-2$, we must have $\operatorname{dist}(M, N)=2 r=$ $m+k \geq m+1$.

Problem 10 For distinct points $A_{1}, \ldots, A_{n}, n \geq 4$, assume that the polygon $A_{1} \ldots A_{n}$ is non-self-intersecting and satisfies the same requirements as in Problem 8 . For every n, find the maximal possible value of r.

Solution

Answer: If $n=4 m+k$ with $k=0,1,2,3$, then $r=(m+1) / 2$.
If $n=4 m+k$ with $k=1,2,3$, the example from the previous item shows that $r=(m+1) / 2$ is possible. If $n=4 m$, we can also achieve $r=(m+1) / 2$. Namely, we can place m vertices along each side of the taxicab circle at distances $1,2, \ldots, m$ from vertices.

Let us prove that the larger value of r is not possible.
Indeed, suppose that $n=4 m+k, k=0,1,2$, or 3 , and $2 r>(m+1)$. Suppose that A_{1}, \ldots, A_{s} are all vertices of the polygon that are located on the side $K L$ of the taxicab circle. Then we have $\operatorname{dist}\left(K, A_{1}\right) \leq 1$, otherwise the side $N K$ contains no points at a distance 1 from A_{1} and cannot contain A_{n}. Similarly, $\operatorname{dist}\left(A_{s}, L\right) \leq 1$. Since $\operatorname{dist}\left(A_{1}, A_{s}\right)=s-1$, we have $s+1 \geq$ $2 r>m+1$. Thus $s>m$: each side of the taxicab circle contains at least $m+1$ vertices of the polygon.

Since there are $4 m+k<4 m+4$ vertices in total, some of the vertices of the polygon must be in K, L, M, or N. Suppose that $K=A_{1}$.

Since $\operatorname{dist}(K, L)=2 r$, the sides $K L$ and $K N$ contain at least $m+2$ vertices each ($K=A_{1}$ is counted twice here).

If L and N are not vertices of the polygon, then the total number of its vertices is at least $(m+2)+(m+2)+(m+1)+(m+1)-2=4 m+4$ since only two vertices could be counted twice, and we get a contradiction.

If L, N are vertices of the polygon, then the sides $L M, M N$ also contain at least $m+2$ vertices of the polygon, and the total number of vertices is at least $4 m+8-4=4 m+4>4 m+k$. We get a contradiction.

[^0]: ${ }^{1}$ Note that although the number of admissible paths in this problem is smaller than in Proplem 1, different paths do not have the same probability: the probabilities of paths that slide along the edge of the grid are bigger. So, each path is counted according to his weight, and the number of paths of length $2 m$, counting the weights, is still $2^{-2 m}$ in the considered case of $(k, l) \neq(m, m)$

