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Problem 1 The city map is an infinite square grid of streets: horizontal
lines are streets that go in the east-west direction, and vertical lines are
streets that go in the north-south direction. A car A starts at the point
(0, 0) and turns north or east on each crossing with probability 1/2. A car B
starts at the point (n,m), n,m > 0, and turns south or west on each crossing
with probability 1/2.

The speeds of the cars are equal and they start simultaneously. Find the
probability of the event that they meet, i.e., appear at the same crossing
simultaneously.

You get bonus points (up to a half of the value of the problem) if you
find the simplest possible expression for the answer in terms of the binomial
coefficients.

Solution Note that the meeting point (k, l) is k + l blocks away from
(0, 0) and (n + m − k − l) blocks away from (n,m). Thus we must have
k + l = (n + m)/2;. If n + m is odd, this is not an integer and thus the
probability is zero. Assume that n + m is even. Assume that n ≥ m;
possible meeting points (k, l) satisfy k + l = (n + m)/2 where k is in the
range (n−m)/2 ≤ k ≤ (n + m)/2.

The number of possible routes from (0, 0) to (k, l) for the car A is
(
k+l
k

)
=(

(n+m)/2
k

)
. The number of possible routes for the car B is

(
n+m−k−l

n−k

)
=(

(n+m)/2
n−k

)
. The total number of routes of length (n + m)/2 for each car

is 2(n+m)/2. So the probability for the cars to meet at (k, l) is

2−(n+m)

(
(n + m)/2

k

)(
(n + m)/2

n− k

)
,

and the total probability to meet somewhere on the diagonal k+l = (n+m)/2
is

2−(n+m)

k=(n+m)/2∑
k=(n−m)/2

(
(n + m)/2

k

)(
(n + m)/2

n− k

)
.

We can simplify this formula in the following way. Consider all possible
routes that go north-east and join (0, 0) to (n,m). We have

(
n+m
n

)
such
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routes, and each passes through one of the points with k + l = (n + m)/2.
So we can turn each route into a pair of routes that join (0, 0) and (n,m) to
(k, l). Vice versa, if we have a pair of routes for the cars that meet at (k, l),
we can unite them into a single route from (0, 0) to (n,m). Thus we have

k=(n+m)/2∑
k=(n−m)/2

(
(n + m)/2

k

)(
(n + m)/2

n− k

)
=

(
n + m

n

)
.

Answer: 2−(n+m)
(
n+m
n

)
if n + m is even; 0 otherwise.

Problem 2 The town map is a grid of streets 3m×m (there are m + 1
streets that go in the east-west direction, and 3m + 1 streets that go in the
north-south direction). Two cars A and B start at the points (0, 0) and
(3m,m), respectively, and move in the same way as in the previous problem,
with one additional rule: if the car A reaches the northern edge of the grid,
it turns to the east and continues to the east (without additional turns); if
the car B reaches the southern edge, it turns to the west and continues to
the west ((without additional turns).

Find the probability of the event that they meet.

You get bonus points (up to a half of the value of the problem) if you
find the simplest possible expression for the answer in terms of the binomial
coefficients.

Solution Below we will use the well-known identities for binomial coef-
ficients,

(
n
k

)
=
(

n
n−k

)
and

∑n
k=0

(
n
k

)
= 2n.

Similarly to the previous item, the cars will meet at a point (k, l) with
k + l = (3m + m)/2 = 2m, m ≤ k ≤ 2m. Let the car A travel 2m blocks,
and let us compute the probability for the car A to get from 0 to (k, l). If
(k, l) 6= (m,m), the car does not reach the top or the rightmost edge of the
grid on its way, thus the probability is the same as in the previous item 1,
pk,l = 2−2m

(
2m
k

)
. Since the total probability is 1, the probability for the car

1Note that although the number of admissible paths in this problem is smaller than
in Proplem 1, different paths do not have the same probability: the probabilities of paths
that slide along the edge of the grid are bigger. So, each path is counted according to his
weight, and the number of paths of length 2m, counting the weights, is still 2−2m in the
considered case of (k, l) 6= (m,m)
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A to get to the remaining intersection (m,m) is

pm,m = 1−
2m∑

k=m+1

pk,2m−k = 1−
2m∑

k=m+1

2−2m

(
2m

k

)
=

m∑
k=0

2−2m

(
2m

k

)
=

2−2m

(
2m

m

)
+

m−1∑
k=0

2−2m

(
2m

k

)
.

We separated away the first summand that is the same as in the previous
item; the rest of the sum is a new addition.

Similarly, the probability for the car B to get from (m, 3m) to (k, l) is
qk,l = 2−2m

(
2m

3m−k

)
if (k, l) 6= (2m, 0); the probability to get to (2m, 0) is

q2m,0 = pm,m, due to the symmetry of the picture with respect to the point
(3m/2,m/2).

Thus the probability that the cars meet is

k=2m∑
k=m

pk,2m−kqk,2m−k =

2−4m

k=2m∑
k=m

(
2m

k

)(
2m

3m− k

)
+

m−1∑
k=0

2−2m

(
2m

k

)
·qm,m+

m−1∑
k=0

2−2m

(
2m

k

)
·p2m,0.

The first part is same as in the previous item for n = 3m, and is simplified
in the same way as before. The last two summands are new. Since qm,m =
p2m,0 = 2−2m, the last two summands equal

2−4m

(
m−1∑
k=0

(
2m

k

)
+

m−1∑
k=0

(
2m

k

))
= 2−4m

(
22m −

(
2m

m

))
= 2−2m−2−4m

(
2m

m

)
.

Answer:

2−4m

(
4m

m

)
+ 2−2m − 2−4m

(
2m

m

)
.

In all problems below the taxicab distance between points A,B with
coordinates (x1, y1) and (x2, y2) is d(A,B) = |x1 − x2|+ |y1 − y2|.
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Problem 3 Suppose that the points A = (0, 0), B = (b1, b2) satisfy
b1, b2 ≥ 0. Describe the locus of points C such that d(A,C) = d(C,B)
(the “taxicab perpendicular bisector” to AB).

Solution The condition for the point C = (x, y) is |x|+ |y| = |x− b1|+
|y − b2|. We have the following cases.

Degenerate case: If b1 = 0 and b2 = 0, C is an arbitrary point on the
plane. If b1 = 0 and b2 > 0, i.e., AB is vertical, we get that x is arbitrary
and |y| = |y − b2|, i.e., y = b2/2: C is located on the perpendicular bisector
to AB. The case of horizontal AB is analogous.

Non-degenerate case: Suppose that AB is not horizontal or vertical.
Assume b2 ≤ b1, i.e., the angle between AB and the horizontal line is not
greater than 45◦. If this is not true, we can reflect the configuration over
x = y.

The condition on the point C = (x, y) is given by |x| + |y| = |x − b1| +
|y − b2|.

b1

b2

A

0

B

I

II

III

IV

V

V I

V II

V III

IX

Divide the plane into nine pieces as shown, by the lines x = 0, y = 0, x =
b1, y = b2. In each of the nine pieces, we get:

I If x ≤ 0, y ≤ 0: −x − y = b1 − x + b2 − y is equivalent to b1 + b2 = 0
which is not true.

II If x ≤ 0, 0 < y < b2: −x+y = b1−x+ b2−y is equivalent to y = b1+b2
2

.
However, this cannot be less than b2 since b2 ≤ b1. Thus C cannot be
in this domain.
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III If x ≤ 0, y ≥ b2: −x+y = b1−x+y− b2 is equivalent to b1 = b2. So for
b1 = b2, the point C can be anywhere in this domain, and if b1 6= b2,
no points C can be here.

IV If 0 < x ≤ b1, y ≤ 0: x−y = b1−x+b2−y is equivalent to x = 1
2
(b1+b2).

This is, indeed, smaller than b1 since b2 ≤ b1. So the set of possible
points C is the vertical ray x = 1

2
(b1 + b2), y ≤ 0.

V If 0 < x ≤ b1, 0 < y ≤ b2: x + y = b1 − x + b2 − y, i.e., x + y = 1
2
(b1 +

b2). This is the line with slope −1 that passes through the midpoint
(b1/2, b2/2) of AB. Note that this line joins the endpoints of the rays
from domain IV and domain V I (see below).

VI If 0 < x ≤ b1, y > b2: x + y = b1 − x + y − b2 is equivalent to
x = 1

2
(b1 − b2). The set of possible C is the ray x = 1

2
(b1 − b2), y > b2.

VII If x > b1, y ≤ 0: x− y = x− b1 + b2− y is equivalent to b1 = b2. So for
b1 = b2, the point C can be anywhere in this domain, and if b1 6= b2,
no points C can be here.

VIII If x > b1, 0 < y < b2: x+y = x−b1+b2−y is equivalent to y = 1
2
(b2−b1),

but this expression is non-positive since b1 ≥ b2. So no points C can
be here.

IX If x > b1, y ≥ b2: x + y = x − b1 + y − b2 is equivalent to b1 + b2 = 0
which is not true.

Answer:

� If b1 = b2 = 0, C is arbitrary.

� If b1 = 0, b2 > 0 or b1 > 0, b2 = 0, C belongs to the perpendicular
bisector of AB.

� For b1 > b2, the set of possible points C is formed by two rays x =
1
2
(b1 + b2), y ≤ 0 and x = 1

2
(b1− b2), y ≥ b2, and the segment that joins

their endpoints x + y = 1
2
(b1 + b2), 0 < x < b1, 0 < y < b2.

5



A

B

� For b1 = b2, the set of possible points C is formed by two quadrants
x ≤ 0, y ≥ b2 and x ≥ b1, y ≤ 0 and the segment x + y = 1

2
(b1 + b2)

that joins their corners. Note that in this case, the rays from domains
IV and V I are located on the borders of these quadrants;

A

B

� For b1 < b2, the case is reduced to the case b1 > b2 by swapping x and y.
So the set of possible points C is formed by two rays y = 1

2
(b1+b2), x ≤ 0

and y = 1
2
(b2 − b1), x ≥ b1, and the segment that joins their endpoints

x + y = 1
2
(b1 + b2), 0 < x < b1, 0 < y < b2.

A

B

Problem 4 Given two points A,B above the line y = kx, 0 < k < 1, find
all points C on the line y = kx such that the distance d(A,C) + d(B,C) is
as small as possible.

Solution Let A = (a1, a2), B = (b1, b2); assume that a2 ≤ b2, otherwise
we swap A and B.
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Consider the lines x = a1, x = b1, y = a2, y = b2. The pictures show
possible cases for the location of the line y = kx with respect to these lines,
namely:

Case 1: a1 ≤ b1, a2 ≤ kb1. Then the line y = kx intersects the rectangle
a1 ≤ x ≤ b1, a2 ≤ x ≤ b2 over the segment [C1, C2] with C1 = (a2/k, a2) and
C2 = (b1, kb1).

a2

b2

a1 b1

A

B

C1

C2

In this rectangle, dist(C,A) + dist(C,B) = |x − a1| + |y − a2| + |x −
b1| + |y − b2| = (x − a1) + (y − a2) + (b1 − x) + (b2 − y) = dist(A,B).
Outside this rectangle, one of the inequalities |x−a1|+ |x− b1| ≥ |a1− b1| or
|y−a2|+|y−b2| ≥ |a2−b2| is strict, thus dist(C,A)+dist(C,B) > dist(A,B).
Thus the set of points on y = kx with the minimum possible total distance
to A,B is the interval [C1, C2].

Case 2: either a2/k > b1 ≥ a1 or a1 > b1 (in the latter case a2 > ka1
since A is above y = kx and thus we have a2/k > a1 > b1). Here the line
y = kx does not intersect this rectangle.

a2

b2

a1 b1

A

B

I

J

C

a2

b2

b1 a1

B

A

I

J

C

Let C = (x, kx) and consider the function dist(C,A) + dist(C,B) =
|x− a1|+ |kx− a2|+ |b1 − x|+ |b2 − kx|.

Note that the function |x − a1| + |b1 − x| decreases to the left from the
interval I = [a1, b1] (or [b1, a1] if b1 > a1), is constant on I, and increases
to the right from I. The function |kx − a2| + |b2 − kx| decreases to the left
from the interval J = [a2/k, b2/k], is constant on J , and increases to the
right from J . The interval I is to the left from the interval J and does not
intersect it since a2/k > max(a1, b1). Thus the sum of these functions will
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decrease for x < max(a1, b1) (where either both functions decrease or one
is constant and the other decreases), and similarly, the sum increases for
x > a2/k. We conclude that the minimum of the function must be on the
interval max(a1, b1) ≤ x ≤ a2/k between I and J .

On this interval, dist(C,A) + dist(C,B) = 2x− a1 − b1 + a2 + b2 − 2kx.
This expression grows with x since 0 < k < 1, thus it takes its minimum at
the leftmost point x = max(a1, b1), y = kx.

Answer: if a2/k ≤ b1 — the interval a2/k ≤ x ≤ b1, y = kx;

if a2/k > max(a1, b1), the point C = (max(a1, b1), k max(a1, b1)).

Problem 5 Suppose that a triangle ABC is taxicab equilateral: d(A,B) =
d(B,C) = d(C,A). Show that one of the sides of ABC is vertical, horizontal,
or has a slope ±1.

Solution Suppose that the side AB is not horizontal or vertical and
does not have slope ±1. Let A = (0, 0) and assume that B = (b1, b2) satisfies
b1, b2 > 0 and b1 > b2. We can always achieve this by placing the origin at the
leftmost vertex A and relecting the configuration with respect to x = 0, y = 0,
and x = y.

Then C is located on the perpendicular bisector to the AB, namely on
the union of the rays x = 1

2
(b1 + b2), y < 0, x = 1

2
(b1 − b2), y > b2 and a

segment x + y = 1
2
(b1 + b2), 0 < x < b1, 0 < y < b2. On this segment, the

taxicab distance to A and B is 1
2
(b1+b2); since the distance dist(A,C) should

be equal to dist(A,B) = b1 + b2, C cannot be on this segment and must be
on one of the rays. We find that C is either C1 = (1

2
(b1 + b2),−1

2
(b1 + b2)) or

C2 = (1
2
(b1 − b2),

1
2
(b1 + 3b2)). In both cases, AC or BC has slope ±1.

A

B

C1

C2
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Problem 6 For a taxicab equilateral triangle ABC,

1. prove that there always exists a point O such that d(O,A) = d(O,B) =
d(O,C), i.e., we can always inscribe an equilateral triangle in a taxicab
circle;

2. Provide an example of a taxicab equilateral triangle such that a point
O with this property is not unique.

Solution (contains simultaneously solutions of both items) Spe-
cial case. Suppose that all segments AB,BC,AC are horizontal, vertical,
or have slopes ±1. Thus ABC is a right triangle with sides parallel to
x = 0, y = 0, x = y.

If only one side has a slope ±1, the triangle is not equilateral. E.g., if
AB is horizontal and AC is vertical, with A = (0, 0), B = (b, 0), C = (0, b),
the distance dist(B,C) is 2b and not b.

The only possible case is when both AB and BC have slopes ±1. Reflect-
ing over x = ±y if necessary, we will assume that A = (−a, 0), B = (0, a),
C = (a, 0). Then any point with y = 0, x ≤ 0 satisfies dist(A,O) =
dist(B,O) = dist(C,O) = |x| + a, thus there are infinitely many points
O with required property. This proves that O exists and provides an
example when it is non-unique, so completes item (b).

B

CA

General case. Suppose that the triangle ABC has a side that is not
vertical, not horizontal, and its slope is not ±1. Let this side be AB. As
in the previous problem, set A = (0, 0) and B = (b1, b2) with b1 > b2;
we have determined that C should be C1 = (1

2
(b1 + b2),−1

2
(b1 + b2)) or

C2 = (1
2
(b1 − b2),

1
2
(b1 + 3b2)). The two points are symmetric with respect

to the middle of AB, thus it is sufficient to consider the first case C =
(1
2
(b1 + b2),−1

2
(b1 + b2)).
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It is easy to see that the point O = (1
2
(b1+b2), 0) will satisfy the equalities

dist(A,O) = dist(B,O) = dist(C,O). Thus such point exists. One can check
that it is unique in this case, but this was not required in the problem.

Thus in the non-degenerate case, the point O exists and is unique.

A

B

C

O

Problem 7 Describe all triangles ABC such that we cannot inscribe
ABC in a taxicab circle, i.e., there is no point O with the property d(O,A) =
d(O,B) = d(O,C).

Solution Call a segment AB “almost horizontal” if its slope is between
−1 and 1, and “almost vertical” otherwise.

Answer: if all segments AB,BC,AC are almost vertical, then O does
not exist. If all these segments are almost horizontal, then O does not exist
as well. In all other cases, O exists.

Indeed, Problem 3 implies that the taxicab perpendicular bisector of any
almost horizontal segment AB is formed by two vertical rays and the slanted
segment that joins their endpoints (this slanted segment degenerates into a
point if AB is horizontal). Similarly, the taxicab perpendicular bisector of
any almost vertical segment is formed by two horizontal rays and the slanted
segment that joins their endpoints.

So if AB is almost vertical and BC is almost horizontal, then their taxicab
perpendicular bisectors must intersect. The intersection point O satisfies
dist(A,O) = dist(B,O) = dist(C,O).
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A

B

C

O

If AB,BC, or AC has slope exactly 1 or −1, the corresponding taxicab
perpendicular bisector is a union of two quadrants and the segment that joins
their corners. This set intersects all possible taxicab perpendicular bisectors.
In this case, O will also exist.

A

B

C

Finally, assume that all segments AB,BC,AC are almost horizontal. As-
sume that A = (0, 0) is the leftmost point, B = (b1, b2), and C = (c1, c2) is
the rightmost point. Then the taxicab perpendicular bisector of AB is con-
tained in the strip 0 < x < b1, and the taxicab perpendicular bisector of BC
is a contained in the strip b1 < x < c1. Thus they do not intersect, and there
cannot be a point O with dist(A,O) = dist(B,O) = dist(C,O).
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A

B

C

The case when all segments AB,BC,AC are almost vertical is considered
in an analogous way.

Problem 8 Points A1, . . . , An, n ≥ 4, satisfy the following: 1 = d(A1, A2) =
d(A2, A3) = · · · = d(An, A1), and there exists a point O such that d(O,A1) =
d(O,A2) = · · · = d(O,An) = r. Some of the points Ak may coincide. For
every n, find the minimal possible value of r.

Solution

Answer: r = 1/2

Note that for the taxicab distance, we have a version of the triangle
inequality: dist(A,B) + dist(B,C) ≥ dist(A,C). Indeed, we have for A =
(xA, yA), B = (xB, yB), C = (xC , yC):

|xA − xB|+ |yA − yB|+ |xB − xC |+ |yB − yC | ≥ |xA − xC |+ |yA − yC |
due to the inequality |xA − xB| + |xB − xC | ≥ |xA − xC | and an analogous
one for y.

Thus 1 = d(A1, A2) ≤ d(O,A1) + d(O,A2) = 2r, i.e., r ≥ 1/2.

To see that r = 1/2 is possible, we will construct an example, separately
for odd and for even n.

For even n = 2k, take A1 = A3 = . . . A2k−1 = (0.5, 0), and A2 = A4 =
. . . A2k = (−0.5, 0), and O = (0, 0). It is easy to see that all conditions hold
true.

For odd n = 2k + 1, take A1 = (0, 0.5), A2 = A4 = . . . A2k = (−0.5, 1),
A3 = . . . A2k+1 = (0.5, 0), and O = (0, 0). Since dist(A1, A2) = dist(A2k+1, A1) =
1, all conditions still hold true.
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Problem 9 For distinct points A1, . . . , An, n ≥ 4, assume that the poly-
gon A1 . . . An is non-self-intersecting and satisfies the same requirements as
in Problem 8 . For every n, find the minimal possible value of r.

Solution

Answer: for n = 4m, we have r = m/2 = n/8. For n = 4m + k, k =
1, 2, 3, we have r = (m + 1)/2 = (bn/4c+ 1)/2.

Consider the set of points X such that dist(O,X) = 1 (the taxicab circle
of radius 1). This set is given by |x| + |y| = 1, and is thus a square with
sides x + y = 1, x > 0, y > 0; −x + y = 1, x < 0, y > 0; x − y = 1, x >
0, y < 0; x + y = −1, x < 0, y < 0. Note that taxicab lengths of these
segments are equal to 2r. Let K,L,M,N be vertices of this square. All
points A1, A2, . . . , An are located on this taxicab circle, and since A1 . . . An

is non-self-intersecting, they are numbered along the circle (either clock- or
counterclockwise).

K

L

M

N

Put n = 4m + k, k = 0, 1, 2, 3.

Suppose that k=0. Applying the triangle inequality, we find that
8r = dist(K,L) + dist(L,M) + dist(M,N) + dist(N,K) ≥ dist(A1, A2) +
dist(A2, A3) + · · ·+ dist(An, A1) = n, thus r ≥ n/8.

To see that r = n/8 is possible, place four vertices A1, A1+m, A1+2m, A1+3m

of the polygon at the vertices K,L,M,N of the taxicab circle of radius r =
n/8 and distribute other points evenly along the taxicab circle. Then we
have 2r = dist(A1, A1+m) = m = n/4 and r = n/8.
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A1

A2

A3

A1+m

A1+2m

A1+3m

Suppose that k 6= 0, n > 4.

Then we can achieve r = (bn/4c + 1)/2 = (m + 1)/2. To see this, place
4m+ 4 points A1, . . . , A4m+4 along the taxicab circle of radius r = (m+ 1)/2
in the same way as in the previous case, and then remove (4−k) of them from
the vertices of the taxicab circle. The remaining 4m + k points will satisfy
the assumptions. Indeed, the points near the vertex of the taxicab circle
have coordinates (r−0.5,−0.5), (r, 0), (r−0.5, 0.5), and all pairwise taxicab
distances between them are 1, so the conditions on the points A1, . . . , An will
be still satisfied if we remove the vertex from (r, 0).

A1

A2

A3

Suppose that a smaller value of r is possible, and let us show that n =
4m + k points A1, . . . , An at distances 1 cannot fit along the taxicab circle
of radius r. Since 2r < m + 1, triangle inequality implies that the side of
the taxicab circle (of taxicab length 2r) cannot contain m+ 2 or more points
Aj. On the other hand, at least one side of the taxicab circle must contain
at least m+ 1 points Aj since there are 4m+ k points in total. Consider the
side KL that contains exactly m+ 1 points A1, . . . , Am+1. Since 2r < m+ 1,
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the taxicab distances dist(K,A1) and dist(Am+1, L) are smaller than 1.

Now, show that dist(Am+1, L) < 1 implies dist(L,Am+2) = 1. Indeed,
suppose that L = (0, r). We have Am+1 = (a, r − a) with a < 0.5. Then
Am+2 = (−b, r− b) satisfies dist(Am+1, Am+2) = 1 = a+ b+ |b− a|. If b ≤ a,
this is at most a + b + a− b = 2a < 1 and we get a contradiction. If b > a,
we have 1 = a + b + b− a and thus b = 1/2, dist(L,Am+2) = 1.

Am+1

< 1

L

= 1

Am+2

Since 2r < m+1, the side LM contains at most m vertices of the polygon
(not counting L if Am+1 = L).

Similarly, dist(A1, K) < 1 implies that dist(K,An) = 1 and the side NK
contains at most m vertices of the polygon (not counting K if A1 = K) .
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K

A1

Am+1

L
= 1

Am+2

< 1

M

= 1

A2m+2

A3m+k

= 1

N
< 1

A4m+k

= 1

A2m+1

A3m+k+1

If 2r < m, both LM and NK contain strictly less than m vertices, then
the taxicab circle contains at most (m+1)+(m−1)+(m−1)+(m+1) = 4m
vertices and we get a contradiction.

Suppose that m ≤ 2r < m+1: then LM and NK contain exactly m ver-
tices of the polygon, namely Am+2, . . . , A2m+1 and A4m+k, A4m+k−1, . . . , A3m+k+1.
Moreover, since dist(L,Am+1) = 1, we have dist(A2m+1,M) < 1. This again
implies that dist(M,A2m+2) = 1. Similarly, since dist(K,A4m+k) = 1, we
have dist(A3m+k+1, N) < 1 and thus dist(N,A3m+k) = 1.

This is not possible: since A2m+2 and A3m+k are located on the same
side MN at taxicab distances 1 from its endpoints and the taxicab distance
between A2m+2 and A3m+k is m + k − 2, we must have dist(M,N) = 2r =
m + k ≥ m + 1.
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Problem 10 For distinct points A1, . . . , An, n ≥ 4, assume that the
polygon A1 . . . An is non-self-intersecting and satisfies the same requirements
as in Problem 8 . For every n, find the maximal possible value of r.

Solution

Answer: If n = 4m + k with k = 0, 1, 2, 3, then r = (m + 1)/2.

If n = 4m+ k with k = 1, 2, 3, the example from the previous item shows
that r = (m+1)/2 is possible. If n = 4m, we can also achieve r = (m+1)/2.
Namely, we can place m vertices along each side of the taxicab circle at
distances 1, 2, . . . ,m from vertices.

Let us prove that the larger value of r is not possible.

Indeed, suppose that n = 4m + k, k = 0, 1, 2, or 3, and 2r > (m + 1).
Suppose that A1, . . . , As are all vertices of the polygon that are located on
the side KL of the taxicab circle. Then we have dist(K,A1) ≤ 1, otherwise
the side NK contains no points at a distance 1 from A1 and cannot contain
An. Similarly, dist(As, L) ≤ 1. Since dist(A1, As) = s − 1, we have s + 1 ≥
2r > m + 1. Thus s > m: each side of the taxicab circle contains at least
m + 1 vertices of the polygon.

Since there are 4m+ k < 4m+ 4 vertices in total, some of the vertices of
the polygon must be in K,L,M , or N . Suppose that K = A1.

Since dist(K,L) = 2r, the sides KL and KN contain at least m + 2
vertices each (K = A1 is counted twice here).

If L and N are not vertices of the polygon, then the total number of its
vertices is at least (m+ 2) + (m+ 2) + (m+ 1) + (m+ 1)− 2 = 4m+ 4 since
only two vertices could be counted twice, and we get a contradiction.

17



If L,N are vertices of the polygon, then the sides LM , MN also contain
at least m + 2 vertices of the polygon, and the total number of vertices is at
least 4m + 8− 4 = 4m + 4 > 4m + k. We get a contradiction.
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