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ABSTRACT

A new approach to a variety of problems related to the system of Maxwell’s equations is presented.
It is a negative-norm least-squares algorithm based on the ideas from [1]. The numerical experiments
included confirm that the new method is a valuable alternative in problems ranging from magneto-
statics to the computation of Maxwell eigenvalues.

[1] J.H. Bramble and J.E. Pasciak. A new approximation technique for div-curl systems. Math. Comp.
(to appear).

1 Electromagnetic Theory

Let Ω be a domain containing linear, isotropic, inhomogeneous material with magnetic permeability
µ and electric permittivity ε. Electromagnetic phenomena in Ω can be described by the time harmonic
Maxwell equations:




∇× h = λ ε e + j in Ω,

∇× e = −λµ h in Ω,

e × n = 0 on ∂Ω,

µ h · n = 0 on ∂Ω,

(1)

where h , e : Ω → C3 are the magnetic and electric fields, λ = i ω is the frequency of propagation and
j is the current density. The boundary conditions correspond to Ω surrounded by a perfect conductor.
Problems related to these equations arise in various practical applications, but often, due to the large
null-space of the curl operator, are difficult to solve. The full system (1) can be used to compute the
electromagnetic field generated by a given current. When j = 0 we have the eigenvalue problem,
which describes the frequencies that will propagate through the medium. This is important in the
design of various structures as waveguides and accelerators. The case of magnetostatics involves
only h and is modeling the magnetic fields produced by steady currents. The case of electrostatics
involves only e and describes the electric fields produced by stationary source charges.

2 Reformulation of the Eigenvalue Problem

Our method is based on a very weak formulation of the magnetostatic and electrostatic problems.
Here we illustrate how it is applied to the eigenvalue problem. Consider the two div-curl systems




∇× h = εg1 in Ω,

∇ · (µh) = 0 in Ω,

µh · n = 0 on ∂Ω,

and




∇× e = µg2 in Ω,

∇ · (εe) = 0 in Ω,

e × n = 0 on ∂Ω,

(2)

These problems are solvable if the source terms gk ∈ L2(Ω), k = 1, 2 satisfy certain compatibility
conditions. Define the test spaces

V 1 = H1
0(Ω), H1 = H1(Ω), V 2 = H1(Ω), H2 = H1

0 (Ω), Yk = V k × Hk, k = 1, 2 .

The weak formulations of (2) are obtained using integration by parts:

Find h ∈ L2(Ω) satisfying (h,∇× v) + (µh,∇h) = (ε(I − Q1)g1, v) for all (v, h) ∈ Y1 .

Find e ∈ L2(Ω) satisfying (e,∇× v) + (εe,∇h) = (µ(I − Q2)g2, v) for all (v, h) ∈ Y2 .
(3)

Qk are L2(Ω) projectors related to compatibility, i.e. gk is compatible data if and only if Qkgk = 0.
The solution operators Sk : L2(Ω) 7→ L2(Ω) are defined by Skgk ≡ xk. All eigenfunctions of the
original system with nonzero λ satisfy S1(λe) = h and S2(−λh) = e, i.e.
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)
. (4)

Moreover, if e, h ∈ L2(Ω) satisfy (4), then they are eigenfunctions of the Maxwell system.
B is a compact, skew-Hermitian operator on L2

ε(Ω) × L2
µ(Ω). Therefore, −B2 is positive, semidefinite,

and Hermitian. Its eigenpairs, and therefore the eigenpairs of (1), can be obtained by solving

S2S1φ = τ2φ. (5)

3 Least-Squares Discretization

Assume mesh partitioning of Ω. Define discrete solution space: Xh ⊂ L2(Ω), discrete test space: Yh,k ⊂ Yh.
In the simplest case, Xh – piecewise constants and Yh,k – piecewise linear + face bubble functions in each
component. The bubbles are required in our method to insure the solvability of the approximation to (3).
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Figure 1. Face bubble functions in two and three dimensions.

For each equation in (3), we apply a least-squares discretization, based in the H−1(Ω) inner prod-
uct. This leads to an algebraic system with a symmetric and positive definite matrix. The matrix
is full, but its action can be easily computed by inverting the standard piecewise linear stiffness
matrix. Inversion can be replaced by a preconditioner, e.g. few sweeps of multigrid on each ap-
plication of the matrix. Here are few advantages of the resulting algorithm:

• We have optimal order error estimates with minimal regularity assumptions.

• Our method is based in L2(Ω), so the algebraic system is symmetric, positive definite and
well-conditioned. Thus the action of Sh,k : L2(Ω) 7→ Xh, the discrete analogs of Sk, are
relatively easy to compute.

• We were able to proof that the operators Sh,k converge in operator norm to Sk.

• This implies that the eigenvalues of the discrete operator Sh,2Sh,1 will converge to the in-
verses of the Maxwell eigenvalues, and there will be no spurious eigenvalues as in some
other methods.

4 Magnetostatics

Here we demonstrate the computational behavior of the proposed method on few examples in the
case of magnetic fields produced by steady currents. The iteration stopping criterion in PCG is re-
duction of the initial residual by 6 orders of magnitude. We expect number of iterations bounded
independently of the number of unknowns.

The first problem is posed on a L-shaped domain. The solution is only in H1+s(Ω) for s < 2
3 . The

components of the magnetic field are shown on the next figure. One can clearly see the singularity at
the origin. Numerical experiments confirm the expected convergence rate (22/3 = 1.5874...).

h ||e||0 ratio nit N time

0.1767 0.22271 12 512 0.03
0.0883 0.14253 1.5588 13 2048 0.11
0.0441 0.09072 1.5712 13 8192 0.59
0.0220 0.05749 1.5779 13 32768 2.51
0.0110 0.03635 1.5817 13 131072 12.8

Figure 2. Magnetostatic problem in a L-shaped domain.

The next problem is a cross-section of a magnet with small air gap. In this case µ has a jump of 4
orders of magnitude (µ0 = 1, µ1 = 104). The source current is zero except for the shaded parts. Note
the first order convergence, and that using multigrid instead of direct solver leads to a reduction of
more than 16 in the computational time.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������

µ

µ
0

1

-j

10.3 0.80

1

0.8

0.2

0

dj

h ||e||0 nit N time(mg) time(exact)

0.0316 0.3162 9 152 0.02 0.01
0.0158 0.1581 16 608 0.05 0.17
0.0079 0.0790 19 2432 0.19 2.59
0.0039 0.0395 20 9728 1.11 14.3
0.0019 0.0197 21 38912 5.33 85.9

Figure 3. Cross-section of a three dimensional magnet.

Next example is a three dimensional transformer. The right hand side, specifies rotational currents
in the three coils, µ is four orders of magnitude larger in the iron core.

Figure 4. The transformer problem.

5 The Eigenvalue Problem

The eigenvalue problem has many applications, one of which is the design of linear accelerators,
where the eigenmodes of the structure correspond to the resonating frequencies and thus are of criti-
cal importance.

Figure 5. Example of an accelerator induction cell (about 1m in diameter). Some of the lowest eigenmodes
(1st, 5th, 12th and 20th) are shown. Courtesy of EMSolve’s project.

Here we report our eigenvalue computations for model cases in two and three dimensions.

h |λmax − λh,max| nit N time(mg)

0.125 0.0014714 13 384 0.67
0.0625 0.0004549 11 1536 3.72
0.03125 0.0001069 9 6144 22.6

0.015625 0.0000267 8 24576 250
0.0078125 0.0000067 7 98304 2577

Figure 6. Eigenvalue computation with ε = µ = 1 for the maximal 12 eigenvalues in the unit cube (left) and
the maximal eigenvalue in the unit square (right).

6 Current Research

Our current work is on eigenvalue computations for practical problems which are of interest for the
lab. This involves computations of large three-dimensional problems which necessarily are done in
parallel. The parallel implementation is based on data structures and preconditioners from the hypre
package.

Figure 7. Initial mesh for the transformer which is split and refined on 8 processors.
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