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January 2003

Do all of the following five problems.

Problem 1. Let A and B be matrices in
� n×n , A be non-singular, and satisfy the inequality

||A−1||2||B||2 ≤ q with a constant q < 1. Here || · ||2 is the matrix norm subordinate to the
Euclidean norm in

� n .

(a) Show that C = A + B is non-singular.
(b) Show that the iteration process Axj+1 = b − Bxj , j = 0, 1, . . . converges for any x0 to

the solution of the system Cx = b. Give an estimate for the Euclidean norm of error
xj − x in terms of q.

(c) Let A = 2I, where I is the identity matrix in
� n×n , and let B be the matrix with entries

of −1 on the two main co-diagonals and zeros elsewhere. Estimate q in terms of n.

Problem 2. Consider the Cauchy problem y′ = f(t, y), y(t0) = y0 and the multistep formula

ηn+1 = (1 − a)ηn + aηn−1 +
h

12
{(5 − a)fn+1 + 8(1 + a)fn + (5a − 1)fn−1}.

Here a is a real parameter, fn = f(tn, ηn), tn = t0 +nh, and ηn is an approximation of y(tn).

(a) Show that the above method has a local truncation error which is O(h3) for all a.
(b) Find a value for a so that the local truncation error is O(h4) and check whether the

resulting scheme satisfies the root condition.
(c) Define the region of absolute stability of a numerical method for solving the Cauchy

problem for an ordinary differential equation. Define what it means for a multistep
method to be A–stable. Is the method of Part (b) A–stable?

Problem 3. Consider the following two point boundary value problem:

−u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), 0 ≤ x ≤ 1, u(0) = u(1) = 0.

Define xj = jh for j = 0, . . . , n and set h = 1/n. Let Lh be the (n − 1) × (n − 1) matrix
corresponding to the finite difference scheme:

y0 = 0

(Lhy)j ≡
−yj−1 + 2yj − yj+1

h2
+ pj

yj+1 − yj−1

2h
+ qjyj = fj , j = 1, . . . , n − 1,

yn = 0.

Here pj = p(xj), qj = q(xj), fj = f(xj), and yj represents an approximation to u(xj).

(a) Assume that q(x) ≥ q0 > 0 for x ∈ (0, 1) and that the step-size h satisfies

1 − h|pj|/2 ≥ 0 for j = 1, . . . , n − 1.

Show that Lh is non-singular and satisfies

‖L−1

h ‖∞ ≤ q−1
0

where ‖ · ‖∞ denotes the matrix norm subordinate to the L∞ norm on
� n−1 .

(b) If τj , j = 1, . . . , n − 1 is the local truncation error, then use the results of Part (a) to
show that

|u(xj) − yj| ≤ q−1
0 ‖τ‖∞, j = 1, . . . , n − 1.
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Problem 4. Consider the space of linear functions on a triangle with three degrees of
freedom given by the function values at the centers of the edges.

(a) Show that these nodal values form a unisolvent set.
(b) Suppose Ω is a polygonal domain in

�
2 and let T = ∪τ be a triangulation of Ω. Let Sh

be the approximation space associated with the degrees of freedom of Part (a). Prove or
disprove: Sh is a subspace of H1(Ω).

(c) Let u be the solution of the problem

u − ∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω.

Define

ah(v, w) = (v, w) +
∑
τ∈T

∫
τ

∇v · ∇w dx where (v, w) =

∫
Ω

vw dx.

Let uh be the unique function in Sh satisfying

ah(uh, w) = (f, w) for all w ∈ Sh.

Derive a representation for the error

ρ(χ) ≡ (f, χ) − ah(u, χ), χ ∈ Sh,

in terms of integrals of the normal derivative of the solution u (and suitable expressions
involving χ) along the edges of the triangulation.

(d) State an error estimate in the norm

‖u − uh‖h ≡ ah(u − uh, u − uh)
1/2

in terms of the quantity ρ(χ) (you need not provide a bound for ρ(χ)).

Problem 5. Consider the one dimensional wave equation:

utt − c2uxx = 0, for x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0, for t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), for x ∈ [0, 1].

(a) Define the semi-discrete approximation to this problem based on a conforming approxi-
mation space S0

h ⊂ H1
0 (0, 1).

(b) For k > 0, define the fully discrete scheme based on the time difference

∂2u

∂t2
(x, tn) ≈

u(x, tn+1) − 2u(x, tn) + u(x, tn−1)

k2

where the term of the spatial derivative is evaluated at tn = nk. This results in an
approximate solution denoted Un, (Un ∈ S0

h and Un ≈ u(·, tn), n = 0, 1, . . .). Make sure
that you define U0 and U1 appropriately.

(c) Derive a Courant condition which guarantees stability of the time stepping method of
Part (b) above. You may assume that the spatial mesh is equally spaced so that the
“mass” and “stiffness” matrices share the same eigenvectors.


