## NUMERICAL ANALYSIS QUALIFIER

January 13, 2004

Do all of the following five problems.
Problem 1. Let $A$ be a real, symmetric, nonsingular matrix of dimension $n$ ( $A$ not positive definite). Let $(\cdot, \cdot)$ denote the dot inner product on $R^{n}$.
(a) Derive a steepest descent iteration for solving

$$
\begin{equation*}
A x=b \tag{1.1}
\end{equation*}
$$

of the form

$$
x_{n}=x_{n-1}+\alpha_{n} r_{n-1}, \quad r_{n-1}=b-A x_{n-1}
$$

which minimizes the error $e_{n}=x-x_{n}$ in the norm

$$
\left\|e_{n}\right\|_{A^{2}} \equiv\left(A e_{n}, A e_{n}\right)
$$

(b) Given an initial iterate $x_{0}$, set $r_{0}=b-A x_{0}$ and let

$$
K_{n}=\operatorname{span}_{i=0}^{n-1}\left\{A^{i} r_{0}\right\}
$$

be the Krylov space. Let $x_{n}=x_{0}+\chi$ where $\chi \in K_{n}$ is such that $e_{n}=x-x_{n}$ satisfies

$$
\begin{equation*}
\left\|e_{n}\right\|_{A^{2}}=\min _{\theta \in K_{n}}\left\|x-\left(x_{0}+\theta\right)\right\|_{A^{2}} \tag{1.2}
\end{equation*}
$$

Show that $\chi$ (and hence $x_{n}$ ) is uniquely defined. This method can be implemented using a conjugate gradient type algorithm.
(c) Derive an estimate for the rate of iterative convergence for the method satisfying (1.2) in terms of the largest and smallest eigenvalue of the matrix $A^{2}$. (Hint: Start by showing that this method with $n=2 l$ is at least as good as $l$ steps of the conjugate gradient method applied to $A^{2} x=A b$ with the same initial iterate.)

Problem 2. Consider Simpson's rule

$$
I(f)=\frac{1}{3}(f(-1)+4 f(0)+f(1))
$$

for approximating the integral

$$
\int_{-1}^{1} f(x) d x
$$

(a) Show that $I(f)$ is exact for quadratics.
(b) Compute the Peano Kernel $K_{2}(t)$ for the error.
(c) Use the Peano Kernel Theorem to show that for $f \in C^{3}[-1,1]$,

$$
\begin{equation*}
\left|\int_{-1}^{1} f(x) d x-I(f)\right| \leq \frac{1}{36} \max _{x \in[-1,1]}\left|f^{\prime \prime \prime}(x)\right| . \tag{2.1}
\end{equation*}
$$

Problem 3. Consider the complex valued boundary value problem

$$
\begin{aligned}
u-\Delta u+i \omega u & =f \text { in } \Omega \\
i u+\frac{\partial u}{\partial n} & =g \text { on } \partial \Omega .
\end{aligned}
$$

Here $i$ denotes the square root of minus one, $n$ is the outward normal on $\partial \Omega$ and $\omega$ is a real number.
(a) Rewrite the above boundary value problem as a system of PDE's and boundary conditions involving the real and imaginary parts of $u,\left(u_{r}\right.$ and $u_{i}$, respectively).
(b) Derive a weak formulation of the above problem which gives rise to a coercive bilinear form on the space $H^{1}(\Omega)^{2}$.
(c) Show that the form of Part b is coercive.

Problem 4. Let $\Omega$ be a polygonal domain in $R^{2}$ and consider the problem: Find $u \in V \equiv$ $H^{1}(\Omega)$ satisfying

$$
a(u, v)=f(v) \forall v \in V,
$$

where

$$
a(u, v) \equiv \int_{\Omega}(\nabla u \cdot \nabla v+u v) d x d y, f(v) \equiv \int_{\Omega} f v d x d y, f \in L^{2}(\Omega)
$$

Denote $\mathcal{T}=\cup K_{i}$ to be an admissible triangulation of $\Omega$ and $P_{2}$ to be the set of polynomials in $x$ and $y$ of degree 2. For each triangle, consider the degrees of freedom for $P_{2}$ corresponding to the values at the vertexes and values of the normal derivatives at the centers of the edges.
(a) Show that a function in $P_{2}$ which vanishes at the above degrees of freedom has zero gradient at the centers of the edges.
(b) Use Part a above to show that the above degrees of freedom form a unisolvent set for $P_{2}$.
(c) Prove or disprove: The piecewise quadratic space defined with respect to $\mathcal{T}$ and these degrees of freedom a subset of $V$.
Problem 5. Given $u_{i}^{0}, u_{i}^{1}$, for $i \in Z$ and $k, h, b>0$ consider the Du Fort-Frankel scheme:

$$
\frac{v_{m}^{n+1}-v_{m}^{n-1}}{2 k}+b \frac{v_{m}^{n+1}+v_{m}^{n-1}-v_{m-1}^{n}-v_{m+1}^{n}}{h^{2}}=f_{m}^{n}, \quad m \in Z, n=1,2, \ldots
$$

With $u_{i}^{0}, u_{i}^{1}$ and $f_{m}^{n}$ appropriately chosen, the discrete solution approximates the solution $\left(v_{m}^{n} \approx u(m h, n k)\right)$ of the parabolic initial value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}-b \frac{\partial^{2} u}{\partial x^{2}} & =f, \quad x \in R, t>0 \\
u(x, 0) & =u_{0}(x), \quad x \in R
\end{aligned}
$$

(a) Give a bound for the local truncation error associated with the above scheme.
(b) Using Fourier mode analysis, determine the stability properties of the above scheme.

