NUMERICAL ANALYSIS QUALIFIER

January 13, 2004

Do all of the following five problems.

Problem 1. Let A be a real, symmetric, nonsingular matrix of dimension n (A not positive definite). Let (\cdot, \cdot) denote the dot inner product on \mathbb{R}^n .

(a) Derive a steepest descent iteration for solving

of the form

$$x_n = x_{n-1} + \alpha_n r_{n-1}, \qquad r_{n-1} = b - A x_{n-1}$$

which minimizes the error $e_n = x - x_n$ in the norm

$$||e_n||_{A^2} \equiv (Ae_n, Ae_n).$$

(b) Given an initial iterate x_0 , set $r_0 = b - Ax_0$ and let

$$K_n = \operatorname{span}_{i=0}^{n-1} \{A^i r_0\}$$

be the Krylov space. Let $x_n = x_0 + \chi$ where $\chi \in K_n$ is such that $e_n = x - x_n$ satisfies

(1.2)
$$\|e_n\|_{A^2} = \min_{\theta \in K_n} \|x - (x_0 + \theta)\|_{A^2}$$

Show that χ (and hence x_n) is uniquely defined. This method can be implemented using a conjugate gradient type algorithm.

(c) Derive an estimate for the rate of iterative convergence for the method satisfying (1.2) in terms of the largest and smallest eigenvalue of the matrix A^2 . (Hint: Start by showing that this method with n = 2l is at least as good as l steps of the conjugate gradient method applied to $A^2x = Ab$ with the same initial iterate.)

Problem 2. Consider Simpson's rule

$$I(f) = \frac{1}{3}(f(-1) + 4f(0) + f(1))$$

for approximating the integral

$$\int_{-1}^{1} f(x) \, dx.$$

- (a) Show that I(f) is exact for quadratics.
- (b) Compute the Peano Kernel $K_2(t)$ for the error.
- (c) Use the Peano Kernel Theorem to show that for $f \in C^3[-1,1]$,

(2.1)
$$|\int_{-1}^{1} f(x) \, dx - I(f)| \le \frac{1}{36} \max_{x \in [-1,1]} |f'''(x)|.$$

Problem 3. Consider the complex valued boundary value problem

U

$$-\Delta u + i\omega u = f \text{ in } \Omega$$
$$iu + \frac{\partial u}{\partial n} = g \text{ on } \partial\Omega.$$

Here *i* denotes the square root of minus one, *n* is the outward normal on $\partial \Omega$ and ω is a real number.

- (a) Rewrite the above boundary value problem as a system of PDE's and boundary conditions involving the real and imaginary parts of u, $(u_r \text{ and } u_i, \text{ respectively})$.
- (b) Derive a weak formulation of the above problem which gives rise to a coercive bilinear form on the space $H^1(\Omega)^2$.
- (c) Show that the form of Part b is coercive.

Problem 4. Let Ω be a polygonal domain in \mathbb{R}^2 and consider the problem: Find $u \in V \equiv H^1(\Omega)$ satisfying

$$a(u,v) = f(v) \ \forall \ v \in V_{s}$$

where

$$a(u,v) \equiv \int_{\Omega} (\nabla u \cdot \nabla v + uv) \, dx \, dy, \ f(v) \equiv \int_{\Omega} fv \, dx \, dy, \ f \in L^{2}(\Omega)$$

Denote $\mathfrak{T} = \bigcup K_i$ to be an admissible triangulation of Ω and P_2 to be the set of polynomials in x and y of degree 2. For each triangle, consider the degrees of freedom for P_2 corresponding to the values at the vertexes and values of the normal derivatives at the centers of the edges.

- (a) Show that a function in P_2 which vanishes at the above degrees of freedom has zero gradient at the centers of the edges.
- (b) Use Part a above to show that the above degrees of freedom form a unisolvent set for P_2 .
- (c) Prove or disprove: The piecewise quadratic space defined with respect to \mathcal{T} and these degrees of freedom a subset of V.

Problem 5. Given u_i^0 , u_i^1 , for $i \in \mathbb{Z}$ and k, h, b > 0 consider the Du Fort-Frankel scheme:

$$\frac{v_m^{n+1} - v_m^{n-1}}{2k} + b\frac{v_m^{n+1} + v_m^{n-1} - v_{m-1}^n - v_{m+1}^n}{h^2} = f_m^n, \quad m \in \mathbb{Z}, \ n = 1, 2, \dots$$

With u_i^0 , u_i^1 and f_m^n appropriately chosen, the discrete solution approximates the solution $(v_m^n \approx u(mh, nk))$ of the parabolic initial value problem

$$\frac{\partial u}{\partial t} - b \frac{\partial^2 u}{\partial x^2} = f, \quad x \in R, \ t > 0$$
$$u(x, 0) = u_0(x), \quad x \in R.$$

- (a) Give a bound for the local truncation error associated with the above scheme.
- (b) Using Fourier mode analysis, determine the stability properties of the above scheme.