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January 13, 2004

Do all of the following �ve problems.

Problem 1. Let A be a real, symmetric, nonsingular matrix of dimension n (A not positive
de�nite). Let (�; �) denote the dot inner product on Rn.

(a) Derive a steepest descent iteration for solving

(1.1) Ax = b

of the form

xn = xn�1 + �nrn�1; rn�1 = b� Axn�1

which minimizes the error en = x� xn in the norm

kenkA2 � (Aen; Aen):

(b) Given an initial iterate x0, set r0 = b� Ax0 and let

Kn =
n�1
span
i=0

fA
i
r0g

be the Krylov space. Let xn = x0 + � where � 2 Kn is such that en = x� xn satis�es

(1.2) kenkA2 = min
�2Kn

kx� (x0 + �)kA2 :

Show that � (and hence xn) is uniquely de�ned. This method can be implemented

using a conjugate gradient type algorithm.
(c) Derive an estimate for the rate of iterative convergence for the method satisfying (1.2)

in terms of the largest and smallest eigenvalue of the matrix A2. (Hint: Start by
showing that this method with n = 2l is at least as good as l steps of the conjugate

gradient method applied to A2
x = Ab with the same initial iterate.)

Problem 2. Consider Simpson's rule

I(f) =
1

3
(f(�1) + 4f(0) + f(1))

for approximating the integral Z 1

�1

f(x) dx:

(a) Show that I(f) is exact for quadratics.
(b) Compute the Peano Kernel K2(t) for the error.
(c) Use the Peano Kernel Theorem to show that for f 2 C3[�1; 1],

(2.1) j

Z 1

�1

f(x) dx� I(f)j �
1

36
max

x2[�1;1]
jf

000(x)j:

1



2

Problem 3. Consider the complex valued boundary value problem

u��u+ i!u = f in 


iu+
@u

@n
= g on @
:

Here i denotes the square root of minus one, n is the outward normal on @
 and ! is a
real number.

(a) Rewrite the above boundary value problem as a system of PDE's and boundary con-
ditions involving the real and imaginary parts of u, (ur and ui, respectively).

(b) Derive a weak formulation of the above problem which gives rise to a coercive bilinear
form on the space H1(
)2.

(c) Show that the form of Part b is coercive.

Problem 4. Let 
 be a polygonal domain in R
2 and consider the problem: Find u 2 V �

H1(
) satisfying
a(u; v) = f(v) 8 v 2 V;

where

a(u; v) �

Z



(ru � rv + uv) dx dy; f(v) �

Z



fv dx dy; f 2 L
2(
):

Denote T = [Ki to be an admissible triangulation of 
 and P2 to be the set of polyno-
mials in x and y of degree 2. For each triangle, consider the degrees of freedom for P2

corresponding to the values at the vertexes and values of the normal derivatives at the
centers of the edges.

(a) Show that a function in P2 which vanishes at the above degrees of freedom has zero
gradient at the centers of the edges.

(b) Use Part a above to show that the above degrees of freedom form a unisolvent set for

P2.
(c) Prove or disprove: The piecewise quadratic space de�ned with respect to T and these

degrees of freedom a subset of V .

Problem 5. Given u0
i
, u1

i
, for i 2 Z and k; h; b > 0 consider the Du Fort-Frankel scheme:

vn+1
m

� vn�1
m

2k
+ b

vn+1
m

+ vn�1
m

� vn
m�1 � vn

m+1

h2
= f

n

m
; m 2 Z; n = 1; 2; : : : :

With u
0
i
, u1

i
and f

n

m
appropriately chosen, the discrete solution approximates the solution

(vn
m
� u(mh; nk)) of the parabolic initial value problem

@u

@t
� b

@
2
u

@x2
= f; x 2 R; t > 0

u(x; 0) = u0(x); x 2 R:

(a) Give a bound for the local truncation error associated with the above scheme.
(b) Using Fourier mode analysis, determine the stability properties of the above scheme.


