Numerical Analysis Qualifier, May 27, 2005, 1:00-5:00pm, Milner 216 Notes, books, and calculators are not authorized.

To pass you must provide satisfactory answers to problems 4 and 5 and at least to two problems among the three remaining problems.

Question 1

Let I = [0, 1]. Let $k \ge 2$. Let $\{\xi_1, \ldots, \xi_{k-1}\}$ be the roots of \mathcal{L}'_k , where \mathcal{L}_k is the Legendre polynomial of degree k. Recall that the Legendre polynomials are such that

$$\int_0^1 \mathcal{L}_m(t)\mathcal{L}_n(t)dt = \frac{1}{2m+1}\delta_{mn}, \quad 0 \le m, n \le k.$$

and $\mathbb{P}_n = \operatorname{span}\{\mathcal{L}_0, \ldots, \mathcal{L}_n\}.$

- (i) Show that $\int_0^1 \mathcal{L}_n(t)q(t)dt = 0$ for all $q \in \mathbb{P}_{n-1}$.
- (ii) Let $\theta_0, \ldots, \theta_k$ be the Lagrange polynomials associated with the nodes $\{\xi_0, \xi_1, \ldots, \xi_{k-1}, \xi_k\}$ where $\xi_0 = 0$ and $\xi_k = 1$ (i.e., $\theta_i \in \mathbb{P}_k$ and $\theta_i(\xi_j) = \delta_{ij}$). How should the weights $\{\omega_0, \omega_1, \ldots, \omega_{k-1}, \omega_k\}$ be defined so that the quadrature formula

$$\int_0^1 f(t)dt \approx \sum_{i=0}^k \omega_i f(\xi_i)$$

is exact for the polynomials of degree at most k?

(iii) Show that, actually, the resulting quadrature is exact for all the polynomials of degree at most 2k - 1.

Question 2

Consider the linear multistep method for $\frac{dy}{dt} = f(y, t)$

$$\sum_{j=0}^{k} a_{k-j} y_{n-j} = h \sum_{j=0}^{k} b_{k-j} f_{n-j},$$
(1)

where we assume that $a_k = 1$ and $a_i \le 0$ for i = 0, ..., k-1. Let $p(z) = z^k + a_{k-1} z^{k-1} + ... + a_0$.

- (i) Assume that p(1) = 0. Show that the roots of p are in the unit disk.
- (ii) Show that it is not possible to have p(1) = 0, p'(z) = 0 and |z| = 1.
- (iii) Show that if (1) is consistent, then (1) is stable.
- (iv) Consider k = 2 and assume that $b_2 = 0$ (and $a_2 = 1$). Compute the coefficients a_0, a_1, b_0 , and b_1 so that the method of the form of (1) is of order 3. Is it stable?

Question 3

Let A be a $n \times n$ real-valued symmetric positive definite matrix. Let $b \in \mathbb{R}^n$ and assume that $X \in \mathbb{R}^n$ solve AX = b. Let τ_1, τ_2 be two real numbers. The purpose of this problem is to analyze the following two-stage iterative algorithm:

$$X_{n+\frac{1}{2}} = X_n + \tau_1(b - AX_n),$$

$$X_{n+1} = X_{n+\frac{1}{2}} + \tau_2(b - AX_{n+\frac{1}{2}}).$$

(i) Let $e_i = X - X_i$ and $e_{i+\frac{1}{2}} = X - X_{i+\frac{1}{2}}$. Find the matrices K_1 and K_2 such that $e_{n+\frac{1}{2}} = K_1 e_n$ and $e_{n+1} = K_2 e_{n+\frac{1}{2}}$.

- (ii) Find the matrix K such that $e_{n+1} = Ke_n$.
- (iii) If λ is an eigenvalue of A, give the corresponding eigenvalue of K, say $\mu(\lambda)$.
- (iv) Let λ_m be the smallest eigenvalue of A and let λ_M be the largest. Make a rough graphic representation of the mapping $\lambda \mapsto \mu(\lambda)$.
- (v) Give a criterion for choosing τ_1 and τ_2 such that the above algorithm is the most rapidly convergent.
- (vi) Let $\tilde{\lambda} = \frac{1}{2}(\lambda_M + \lambda_m)$ and $\hat{\lambda} = \frac{1}{2\sqrt{2}}(\lambda_M \lambda_m)$. Choosing the above criterion for τ_1 and τ_2 , express τ_1, τ_2 , and the convergence ratio of the method in terms of $\tilde{\lambda}$ and $\hat{\lambda}$.

Question 4

Consider the boundary value problem:

$$-u'' + u = 0 \qquad x \in (0,1), \qquad u(0) = u(1) = 1.$$
(2)

- (i) Introduce a weak formulation of this problem in appropriate Sobolev spaces of functions defined on the interval (0, 1).
- (ii) Let \mathcal{T}_h be the uniform partition of the interval (0, 1) into subintervals of size h = 1/(N+1). Let S_h be the space of the functions that are continuous on [0, 1], zero at 0 and 1, and piecewise linear on \mathcal{T}_h . Write the discrete counterpart to (2) in S_h . Denote by u_h the corresponding approximate solution.
- (iii) Let $x_i = ih, i = 1, ..., N$ be the nodes of the mesh and let $\{\phi_1, \ldots, \phi_N\}$ be the associated nodal basis of S_h . Using the nodal basis, compute the entries of the mass matrix M associated with the term u of (2). Compute the entries of the stiffness matrix K associated with the term u''. Compute the entries of the global stiffness matrix A = K + M.
- (iv) Show that the discrete problem in (ii) yields a linear system of the form AU = hF, where $U = (U_1, U_2, \ldots, U_N)^T$ is the coordinate vector of u_h relative to the nodal basis $\{\phi_1, \ldots, \phi_N\}$. Give the entries of F.
- (v) Let I be the $N \times N$ identity matrix. Show that $M = hI + \alpha(h)K$ and find $\alpha(h)$.
- (vi) Show that for all $1 \le i \le N$, $\min_{1 \le j \le N}(F_j) \le U_i \le \max_{1 \le j \le N}(F_j)$.

Question 5

Let $\Omega =]0,1[$. Henceforth $L^1(\Omega)$ denotes the space of the scalar-valued functions that are integrable over Ω . $W^{1,1}(\Omega)$ is the space of the scalar-valued functions in $L^1(\Omega)$ whose first weak derivatives are in $L^1(\Omega)$. We denote

$$|v||_{L^1} = \int_0^1 |v|, \qquad ||v||_{W^{1,1}} = ||v||_{L^1} + ||v'||_{L^1}.$$

Let $f \in L^1(\Omega)$, and consider the following problem:

$$\begin{cases} \mu u + u_x = f \\ u(0) = 0, \end{cases}$$

where μ is a nonnegative constant. Accept as a fact that for all $f \in L^1(\Omega) = V$ this problem has a unique solution in $W = \{w \in W^{1,1}(\Omega); w(0) = 0\}.$

Let \mathcal{T}_h be a mesh of Ω composed of N segments. Define the finite element spaces

$$W_h = \{ w_h \in \mathcal{C}^0(\Omega); \forall K \in \mathcal{T}_h, w_{h|K} \in \mathbb{P}_1; w_h(0) = 0 \}, V_h = \{ v_h \in L^1(\Omega); \forall K \in \mathcal{T}_h, v_{h|K} \in \mathbb{P}_0 \}.$$

The trial space W_h is equipped with the norm of $W^{1,1}(\Omega)$ and the test space V_h is equipped with the maximum norm: $||v_h||_{L^{\infty}} = \max_{K \in \mathcal{T}_h; x \in K} |v_h(x)|$. Introduce $a(u_h, v_h) := \int_0^1 (\mu u_h + u_{h,x}) v_h$ and the following discrete problem:

$$\begin{cases} \text{Seek } u_h \in W_h \text{ such that} \\ a(u_h, v_h) = \int_0^1 f v_h, \quad \forall v_h \in V_h. \end{cases}$$
(3)

- (i) Show that a is bounded on $W_h \times V_h$.
- (ii) For $w_h \in W_h$, let $\overline{w}_h \in V_h$ be the function such that the restriction of \overline{w}_h to each mesh cell K is the mean value of w_h over this mesh cell, i.e., $\overline{w}_h|_K = \frac{1}{|K|} \int_K w_h$. Show that there is $c_1 > 0$, independent of h, such that

$$||w_h - \overline{w}_h||_{L^1} \le c_1 h ||w_h||_{W^{1,1}}.$$

(iii) Denote by sign(x) the sign function, i.e., $sg(x) = \frac{x}{|x|}$ if x is not zero and sign(0) = 0. Let w_h be a nonzero function in W_h . Set $z_h = sign(\mu \overline{w}_h + w_{h,x})$. Accept as a fact that $(z_h = 0) \Rightarrow (w_h = 0)$. Show that if $w_h \neq 0$ then

$$\frac{a(w_h, z_h)}{\|z_h\|_{L^{\infty}(\Omega)}} \ge \|\mu w_h + w_{h,x}\|_{L^1(\Omega)} - c_1 \mu h \|w_h\|_{W^{1,1}(\Omega)}$$

(iv) Accept as a fact that there exists $\alpha > 0$ such that

$$\forall w \in W, \qquad \|\mu w + w_x\|_{L^1(\Omega)} \ge \alpha \|w\|_{W^{1,1}(\Omega)}.$$

Prove that there is $\gamma > 0$ and h_0 such that for all $h \leq h_0$,

$$\inf_{w_h \in W_h} \sup_{v_h \in V_h} \frac{a(w_h, v_h)}{\|w_h\|_{W^{1,1}(\Omega)} \|v_h\|_{L^{\infty}(\Omega)}} \ge \gamma.$$

(v) Show that (3) has a unique solution.