Numerical Analysis Qualifier,

May 27, 2005, 1:00-5:00pm, Milner 216
Notes, books, and calculators are not authorized.
To pass you must provide satisfactory answers to problems 4 and 5 and at least to two problems among the three remaining problems.

Question 1

Let $I=[0,1]$. Let $k \geq 2$. Let $\left\{\xi_{1}, \ldots, \xi_{k-1}\right\}$ be the roots of \mathcal{L}_{k}^{\prime}, where \mathcal{L}_{k} is the Legendre polynomial of degree k. Recall that the Legendre polynomials are such that

$$
\int_{0}^{1} \mathcal{L}_{m}(t) \mathcal{L}_{n}(t) d t=\frac{1}{2 m+1} \delta_{m n}, \quad 0 \leq m, n \leq k
$$

and $\mathbb{P}_{n}=\operatorname{span}\left\{\mathcal{L}_{0}, \ldots, \mathcal{L}_{n}\right\}$.
(i) Show that $\int_{0}^{1} \mathcal{L}_{n}(t) q(t) d t=0$ for all $q \in \mathbb{P}_{n-1}$.
(ii) Let $\theta_{0}, \ldots, \theta_{k}$ be the Lagrange polynomials associated with the nodes $\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{k-1}, \xi_{k}\right\}$ where $\xi_{0}=0$ and $\xi_{k}=1$ (i.e., $\theta_{i} \in \mathbb{P}_{k}$ and $\theta_{i}\left(\xi_{j}\right)=\delta_{i j}$). How should the weights $\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{k-1}, \omega_{k}\right\}$ be defined so that the quadrature formula

$$
\int_{0}^{1} f(t) d t \approx \sum_{i=0}^{k} \omega_{i} f\left(\xi_{i}\right)
$$

is exact for the polynomials of degree at most k ?
(iii) Show that, actually, the resulting quadrature is exact for all the polynomials of degree at most $2 k-1$.

Question 2

Consider the linear multistep method for $\frac{d y}{d t}=f(y, t)$

$$
\begin{equation*}
\sum_{j=0}^{k} a_{k-j} y_{n-j}=h \sum_{j=0}^{k} b_{k-j} f_{n-j} \tag{1}
\end{equation*}
$$

where we assume that $a_{k}=1$ and $a_{i} \leq 0$ for $i=0, \ldots, k-1$. Let $p(z)=z^{k}+a_{k-1} z^{k-1}+\ldots+a_{0}$.
(i) Assume that $p(1)=0$. Show that the roots of p are in the unit disk.
(ii) Show that it is not possible to have $p(1)=0, p^{\prime}(z)=0$ and $|z|=1$.
(iii) Show that if (1) is consistent, then (1) is stable.
(iv) Consider $k=2$ and assume that $b_{2}=0$ (and $a_{2}=1$). Compute the coefficients a_{0}, a_{1}, b_{0}, and b_{1} so that the method of the form of (1) is of order 3 . Is it stable?

Question 3

Let A be a $n \times n$ real-valued symmetric positive definite matrix. Let $b \in \mathbb{R}^{n}$ and assume that $X \in \mathbb{R}^{n}$ solve $A X=b$. Let τ_{1}, τ_{2} be two real numbers. The purpose of this problem is to analyze the following two-stage iterative algorithm:

$$
\begin{array}{r}
X_{n+\frac{1}{2}}=X_{n}+\tau_{1}\left(b-A X_{n}\right), \\
X_{n+1}=X_{n+\frac{1}{2}}+\tau_{2}\left(b-A X_{n+\frac{1}{2}}\right)
\end{array}
$$

(i) Let $e_{i}=X-X_{i}$ and $e_{i+\frac{1}{2}}=X-X_{i+\frac{1}{2}}$. Find the matrices K_{1} and K_{2} such that $e_{n+\frac{1}{2}}=K_{1} e_{n}$ and $e_{n+1}=K_{2} e_{n+\frac{1}{2}}$.
(ii) Find the matrix K such that $e_{n+1}=K e_{n}$.
(iii) If λ is an eigenvalue of A, give the corresponding eigenvalue of K, say $\mu(\lambda)$.
(iv) Let λ_{m} be the smallest eigenvalue of A and let λ_{M} be the largest. Make a rough graphic representation of the mapping $\lambda \longmapsto \mu(\lambda)$.
(v) Give a criterion for choosing τ_{1} and τ_{2} such that the above algorithm is the most rapidly convergent.
(vi) Let $\tilde{\lambda}=\frac{1}{2}\left(\lambda_{M}+\lambda_{m}\right)$ and $\hat{\lambda}=\frac{1}{2 \sqrt{2}}\left(\lambda_{M}-\lambda_{m}\right)$. Choosing the above criterion for τ_{1} and τ_{2}, express τ_{1}, τ_{2}, and the convergence ratio of the method in terms of $\tilde{\lambda}$ and $\hat{\lambda}$.

Question 4

Consider the boundary value problem:

$$
\begin{equation*}
-u^{\prime \prime}+u=0 \quad x \in(0,1), \quad u(0)=u(1)=1 \tag{2}
\end{equation*}
$$

(i) Introduce a weak formulation of this problem in appropriate Sobolev spaces of functions defined on the interval $(0,1)$.
(ii) Let \mathcal{T}_{h} be the uniform partition of the interval $(0,1)$ into subintervals of size $h=1 /(N+1)$. Let S_{h} be the space of the functions that are continuous on $[0,1]$, zero at 0 and 1 , and piecewise linear on \mathcal{T}_{h}. Write the discrete counterpart to (2) in S_{h}. Denote by u_{h} the corresponding approximate solution.
(iii) Let $x_{i}=i h, i=1, \ldots, N$ be the nodes of the mesh and let $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ be the associated nodal basis of S_{h}. Using the nodal basis, compute the entries of the mass matrix M associated with the term u of (2). Compute the entries of the stiffness matrix K associated with the term $u^{\prime \prime}$. Compute the entries of the global stiffness matrix $A=K+M$.
(iv) Show that the discrete problem in (ii) yields a linear system of the form $A U=h F$, where $U=\left(U_{1}, U_{2}, \ldots, U_{N}\right)^{T}$ is the coordinate vector of u_{h} relative to the nodal basis $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$. Give the entries of F.
(v) Let I be the $N \times N$ identity matrix. Show that $M=h I+\alpha(h) K$ and find $\alpha(h)$.
(vi) Show that for all $1 \leq i \leq N, \min _{1 \leq j \leq N}\left(F_{j}\right) \leq U_{i} \leq \max _{1 \leq j \leq N}\left(F_{j}\right)$.

Question 5

Let $\Omega=] 0,1\left[\right.$. Henceforth $L^{1}(\Omega)$ denotes the space of the scalar-valued functions that are integrable over Ω. $W^{1,1}(\Omega)$ is the space of the scalar-valued functions in $L^{1}(\Omega)$ whose first weak derivatives are in $L^{1}(\Omega)$. We denote

$$
\|v\|_{L^{1}}=\int_{0}^{1}|v|, \quad\|v\|_{W^{1,1}}=\|v\|_{L^{1}}+\left\|v^{\prime}\right\|_{L^{1}}
$$

Let $f \in L^{1}(\Omega)$, and consider the following problem:

$$
\left\{\begin{array}{l}
\mu u+u_{x}=f \\
u(0)=0
\end{array}\right.
$$

where μ is a nonnegative constant. Accept as a fact that for all $f \in L^{1}(\Omega)=V$ this problem has a unique solution in $W=\left\{w \in W^{1,1}(\Omega) ; w(0)=0\right\}$.

Let \mathcal{T}_{h} be a mesh of Ω composed of N segments. Define the finite element spaces

$$
\begin{aligned}
W_{h} & =\left\{w_{h} \in \mathcal{C}^{0}(\bar{\Omega}) ; \forall K \in \mathcal{T}_{h}, w_{h \mid K} \in \mathbb{P}_{1} ; w_{h}(0)=0\right\}, \\
V_{h} & =\left\{v_{h} \in L^{1}(\Omega) ; \forall K \in \mathcal{T}_{h}, v_{h \mid K} \in \mathbb{P}_{0}\right\}
\end{aligned}
$$

The trial space W_{h} is equipped with the norm of $W^{1,1}(\Omega)$ and the test space V_{h} is equipped with the maximum norm: $\left\|v_{h}\right\|_{L^{\infty}}=\max _{K \in \mathcal{T}_{h} ; x \in K}\left|v_{h}(x)\right|$. Introduce $a\left(u_{h}, v_{h}\right):=\int_{0}^{1}\left(\mu u_{h}+u_{h, x}\right) v_{h}$ and the following discrete problem:

$$
\left\{\begin{array}{l}
\text { Seek } u_{h} \in W_{h} \text { such that } \tag{3}\\
a\left(u_{h}, v_{h}\right)=\int_{0}^{1} f v_{h}, \quad \forall v_{h} \in V_{h} .
\end{array}\right.
$$

(i) Show that a is bounded on $W_{h} \times V_{h}$.
(ii) For $w_{h} \in W_{h}$, let $\bar{w}_{h} \in V_{h}$ be the function such that the restriction of \bar{w}_{h} to each mesh cell K is the mean value of w_{h} over this mesh cell, i.e., $\left.\bar{w}_{h}\right|_{K}=\frac{1}{|K|} \int_{K} w_{h}$. Show that there is $c_{1}>0$, independent of h, such that

$$
\left\|w_{h}-\bar{w}_{h}\right\|_{L^{1}} \leq c_{1} h\left\|w_{h}\right\|_{W^{1,1}}
$$

(iii) Denote by $\operatorname{sign}(x)$ the sign function, i.e., $\operatorname{sg}(x)=\frac{x}{|x|}$ if x is not zero and $\operatorname{sign}(0)=0$. Let w_{h} be a nonzero function in W_{h}. Set $z_{h}=\operatorname{sign}\left(\mu \bar{w}_{h}+w_{h, x}\right)$. Accept as a fact that $\left(z_{h}=0\right) \Rightarrow\left(w_{h}=0\right)$. Show that if $w_{h} \neq 0$ then

$$
\frac{a\left(w_{h}, z_{h}\right)}{\left\|z_{h}\right\|_{L^{\infty}(\Omega)}} \geq\left\|\mu w_{h}+w_{h, x}\right\|_{L^{1}(\Omega)}-c_{1} \mu h\left\|w_{h}\right\|_{W^{1,1}(\Omega)}
$$

(iv) Accept as a fact that there exists $\alpha>0$ such that

$$
\forall w \in W, \quad\left\|\mu w+w_{x}\right\|_{L^{1}(\Omega)} \geq \alpha\|w\|_{W^{1,1}(\Omega)}
$$

Prove that there is $\gamma>0$ and h_{0} such that for all $h \leq h_{0}$,

$$
\inf _{w_{h} \in W_{h}} \sup _{v_{h} \in V_{h}} \frac{a\left(w_{h}, v_{h}\right)}{\left\|w_{h}\right\|_{W^{1,1}(\Omega)}\left\|v_{h}\right\|_{L^{\infty}(\Omega)}} \geq \gamma
$$

(v) Show that (3) has a unique solution.

