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Numerical Analysis Qualifier,
May 27 , 2005, 1:00-5:00pm, Milner 216

Notes, books, and calculators are not authorized.

To pass you must provide satisfactory answers to problems 4 and 5 and at least to
two problems among the three remaining problems.

Question 1

Let I = [0, 1]. Let k ≥ 2. Let {ξ1, . . . , ξk−1} be the roots of L′
k, where Lk is the Legendre

polynomial of degree k. Recall that the Legendre polynomials are such that∫ 1

0

Lm(t)Ln(t)dt =
1

2m + 1
δmn, 0 ≤ m,n ≤ k.

and Pn = span{L0, . . . ,Ln}.

(i) Show that
∫ 1

0
Ln(t)q(t)dt = 0 for all q ∈ Pn−1.

(ii) Let θ0, . . . , θk be the Lagrange polynomials associated with the nodes {ξ0, ξ1, . . . , ξk−1, ξk}
where ξ0 = 0 and ξk = 1 (i.e., θi ∈ Pk and θi(ξj) = δij). How should the weights
{ω0, ω1, . . . , ωk−1, ωk} be defined so that the quadrature formula∫ 1

0

f(t)dt ≈
k∑

i=0

ωif(ξi)

is exact for the polynomials of degree at most k?

(iii) Show that, actually, the resulting quadrature is exact for all the polynomials of degree at
most 2k − 1.

Question 2

Consider the linear multistep method for dy
dt = f(y, t)

k∑
j=0

ak−jyn−j = h

k∑
j=0

bk−jfn−j , (1)

where we assume that ak = 1 and ai ≤ 0 for i = 0, . . . , k−1. Let p(z) = zk+ak−1z
k−1+. . .+a0.

(i) Assume that p(1) = 0. Show that the roots of p are in the unit disk.

(ii) Show that it is not possible to have p(1) = 0, p′(z) = 0 and |z| = 1.

(iii) Show that if (1) is consistent, then (1) is stable.

(iv) Consider k = 2 and assume that b2 = 0 (and a2 = 1). Compute the coefficients a0, a1, b0,
and b1 so that the method of the form of (1) is of order 3. Is it stable?

Question 3

Let A be a n× n real-valued symmetric positive definite matrix. Let b ∈ Rn and assume that
X ∈ Rn solve AX = b. Let τ1, τ2 be two real numbers. The purpose of this problem is to
analyze the following two-stage iterative algorithm:

Xn+ 1
2

= Xn + τ1(b−AXn),

Xn+1 = Xn+ 1
2

+ τ2(b−AXn+ 1
2
).

(i) Let ei = X − Xi and ei+ 1
2

= X − Xi+ 1
2
. Find the matrices K1 and K2 such that

en+ 1
2

= K1en and en+1 = K2en+ 1
2
.
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(ii) Find the matrix K such that en+1 = Ken.

(iii) If λ is an eigenvalue of A, give the corresponding eigenvalue of K, say µ(λ).

(iv) Let λm be the smallest eigenvalue of A and let λM be the largest. Make a rough graphic
representation of the mapping λ 7−→ µ(λ).

(v) Give a criterion for choosing τ1 and τ2 such that the above algorithm is the most rapidly
convergent.

(vi) Let λ̃ = 1
2 (λM + λm) and λ̂ = 1

2
√

2
(λM −λm). Choosing the above criterion for τ1 and τ2,

express τ1, τ2, and the convergence ratio of the method in terms of λ̃ and λ̂.

Question 4

Consider the boundary value problem:

−u′′ + u = 0 x ∈ (0, 1), u(0) = u(1) = 1. (2)

(i) Introduce a weak formulation of this problem in appropriate Sobolev spaces of functions
defined on the interval (0, 1).

(ii) Let Th be the uniform partition of the interval (0, 1) into subintervals of size h = 1/(N+1).
Let Sh be the space of the functions that are continuous on [0, 1], zero at 0 and 1, and
piecewise linear on Th. Write the discrete counterpart to (2) in Sh. Denote by uh the
corresponding approximate solution.

(iii) Let xi = ih, i = 1, . . . , N be the nodes of the mesh and let {φ1, . . . , φN} be the associated
nodal basis of Sh. Using the nodal basis, compute the entries of the mass matrix M
associated with the term u of (2). Compute the entries of the stiffness matrix K associated
with the term u′′. Compute the entries of the global stiffness matrix A = K + M .

(iv) Show that the discrete problem in (ii) yields a linear system of the form AU = hF ,
where U = (U1, U2, . . . , UN )T is the coordinate vector of uh relative to the nodal basis
{φ1, . . . , φN}. Give the entries of F .

(v) Let I be the N ×N identity matrix. Show that M = hI + α(h)K and find α(h).

(vi) Show that for all 1 ≤ i ≤ N , min1≤j≤N (Fj) ≤ Ui ≤ max1≤j≤N (Fj).

Question 5

Let Ω = ]0, 1[. Henceforth L1(Ω) denotes the space of the scalar-valued functions that are
integrable over Ω. W 1,1(Ω) is the space of the scalar-valued functions in L1(Ω) whose first
weak derivatives are in L1(Ω). We denote

‖v‖L1 =
∫ 1

0

|v|, ‖v‖W 1,1 = ‖v‖L1 + ‖v′‖L1 .

Let f ∈ L1(Ω), and consider the following problem:{
µu + ux = f,

u(0) = 0,

where µ is a nonnegative constant. Accept as a fact that for all f ∈ L1(Ω) = V this problem
has a unique solution in W = {w ∈ W 1,1(Ω); w(0) = 0}.

Let Th be a mesh of Ω composed of N segments. Define the finite element spaces

Wh = {wh ∈ C0(Ω); ∀K ∈ Th, wh|K ∈ P1; wh(0) = 0},
Vh = {vh ∈ L1(Ω); ∀K ∈ Th, vh|K ∈ P0}.
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The trial space Wh is equipped with the norm of W 1,1(Ω) and the test space Vh is equipped with
the maximum norm: ‖vh‖L∞ = maxK∈Th;x∈K |vh(x)|. Introduce a(uh, vh) :=

∫ 1

0
(µuh +uh,x)vh

and the following discrete problem:{
Seek uh ∈ Wh such that

a(uh, vh) =
∫ 1

0
fvh, ∀vh ∈ Vh.

(3)

(i) Show that a is bounded on Wh × Vh.

(ii) For wh ∈ Wh, let wh ∈ Vh be the function such that the restriction of wh to each mesh
cell K is the mean value of wh over this mesh cell, i.e., wh|K = 1

|K|
∫

K
wh. Show that

there is c1 > 0, independent of h, such that

‖wh − wh‖L1 ≤ c1h‖wh‖W 1,1 .

(iii) Denote by sign(x) the sign function, i.e., sg(x) = x
|x| if x is not zero and sign(0) = 0.

Let wh be a nonzero function in Wh. Set zh = sign(µwh + wh,x). Accept as a fact that
(zh = 0) ⇒ (wh = 0). Show that if wh 6= 0 then

a(wh, zh)
‖zh‖L∞(Ω)

≥ ‖µwh + wh,x‖L1(Ω) − c1µh‖wh‖W 1,1(Ω)

(iv) Accept as a fact that there exists α > 0 such that

∀w ∈ W, ‖µw + wx‖L1(Ω) ≥ α‖w‖W 1,1(Ω).

Prove that there is γ > 0 and h0 such that for all h ≤ h0,

inf
wh∈Wh

sup
vh∈Vh

a(wh, vh)
‖wh‖W 1,1(Ω)‖vh‖L∞(Ω)

≥ γ.

(v) Show that (3) has a unique solution.


