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1. Introduction

Moments of L-functions provide a powerful tool for studying arithmetic information.
They have been used to study the nonvanishing of L-functions at the central point and
subconvexity as well as other analytic properties of L-functions.

1.1. Preliminaries on Modular Forms and Trace Formulas. Let H∗k(q) denote the
space of all newforms of squarefree level q and even integer weight κ. It is well known that
this is a subspace of the (finite) vector space of modular forms of level q and weight κ.

Further, when equipped with the Petersson inner product 〈f, g〉 :=
∫
γ0(q)\H y

κf(z)g(z)dxdy
y2

A key tool in studying modular forms are trace formulas. Notably, the Petersson formula
gives an orthgonality relation for fourier coefficients associated to modular forms that form
a basis, for Sκ(q), the space of all cusp forms of weight κ and level q.

1
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Let B be an orthogonal basis for Sκ(q), then define ∆q(m,n) = cκ
∑
f∈B

λf (m)λf (n)
〈f,f〉 , where

cκ = Γ(κ−1)
(4π)κ−1 . By the Petersson formula, (regardless of our choice of B we have,

∆q(m,n) = δ(m = n) + 2πi−κ
∑
c>0
c≡0(q)

S(m,n; c)

c
Jκ−1

(
4π
√
mn

c

)
, (*)

where S(x, y; c) denotes the Kloosterman sum, and Jκ−1(x) denotes the J-Bessel function
of order k − 1. For a proof of the Petersson Formula, see [5].

Let ∆∗q(m,n) :=
∑

f∈H∗k(q)

λf (m)λf (n)
〈f,f〉 . The starting point for this paper’s calculations is the

following orthogonality relation for newforms of squarefree level q, which do not generally
form a basis for Sκ(q), due to Petrow and Young [9]:

∆∗q(m,n) =
∑
LM=q

µ(L)

ν(L)

∑
`|L∞

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑
a|(m

u
, uv
(u,v)

)

b|(m
u
, uv
(u,v)

)

∑
e1|(d1, m

a2(u,v)
)

e2|(d2, n
b2(u,v)

)

∆M (m,n), (**)

where c`(d) is jointly multiplicative and cpn(pj) = cj,n with cj,n such that

xn =

n∑
j=0

cj,nUj

(x
2

)
,

where Un(x) denotes the nth Chebyshev polynomial of the second kind.
Define,

Aq(n,m) :=
∑
L|q

µ(L)

ν(L)

∑
`|L∞

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑
a|(m

u
, uv
(u,v)

)

b|(m
u
, uv
(u,v)

)

∑
e1|(d1, m

a2(u,v)
)

e2|(d2, n
b2(u,v)

)

δ(m = n).

By applying the Weil bound applied to the Kloosterman sums and the bound Jκ−1(z)�κ

min (1, z), we see that ∆∗q(m,n)−Aq(n,m) = Oκ(q−1+ε(mn)
1
4

+ε).
The first main result of this paper is the following explicit formula for Aq(n,m).
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Theorem 1.1 (Approximate Orthogonality of Newforms). Let m =
∏
p
pmi and n =

∏
p
pni,

then

Aq(n,m) =


φ(q)
q

∏
p|q

∑
n≤ni
m≤mi

p−
mi+ni

2
∏
p-q
δ(mi = ni) if mn is square,

0 otherwise.

1.2. Preliminaries on L-functions associated to newforms. To each newform, we
can associate an L-function in a natural way. In particular, let f ∈ H∗k(q) and consider

the Fourier expansion of f, so f(z) =
∞∑
n=0

λf (n)n
κ−1
2 e(nz). Then to f we associate the

L-function,

L(s, f) =

∞∑
n=0

λf (n)

ns
=
∏
p

(
1−

λf (p)

ps
− χ0(p)

p2s

)−1

.

where χ0 is the trivial character (mod q).
This series converges absolutely for s > 1, and can be extended to an entire function.

Further, we define the completed L-function,

Λ(s, f) =

(√
q

2π

)s+κ−1
2

Γ(s+
κ− 1

2
)L(s, f), (1)

which satisfies the symmetric functional equation, Λ(s, f) = εfΛ(1 − s, f) where εf = ±1

is the root number of f . The average value of L(1
2 , f) at the central point is the focus of

this paper. Precisely, define

M(t)
α1,α2,...,αt :=

∑
f∈H∗k(q)

ωf

t∏
i=1

L(
1

2
+ αi, f),

where ωf := cκ
〈f,f〉 Then the following two theorems giving the asymptotic forMt for t = 1, 2

are the main results of this paper:

Theorem 1.2 (First Moment). Let α satisfy |Re(α)| < 1
2 and for all ε > 0, Im(α)� qε.

Define γ = min(0, Re(α)) then

M(1)
α =

φ(q)

q

∏
p|q

(
1

(1− p−(2+2α)

)
+O(q−1−γ+ε).

where the implied constant depends on k and ε.

Theorem 1.3 (Second Moment). With ωf as before and α, β shifts with real part less than
1/2 in absolute value, and imaginary part bounded be qε for all ε > 0 then for any ε > 0,
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we have

M(2)
α,β =

φ(q)

q

(
ζ(1 + α+ β)

∏
p|q

(1 + p−2−α−β)(1− p−1−α−β)

(1− p−2(1+α))(1− p−2(1+β))
+

(
2π
√
q

)2(α+β) Γ(α+ κ
2 )Γ(β + κ

2 )

Γ(−α+ κ
2 )Γ(−β + κ

2 )
ζ(1− α− β)

∏
p|q

(1 + p−2+α+β)(1− p−1+α+β)

(1− p−2(1−α))(1− p−2(1−β))

)
+

O(q−
1
2
−min (Re(α),Re(β))+ε) (2)

where the implied constant depends on κ and ε.

Duke [4] was the first to compute the first moment and obtain an upper bound on
the second moment at the central point for L-functions associated to newforms, with the
restriction of prime level and weight 2. Akbary [1] obtained the same result for general
weights. Kowalski, Michel and Vanderkam [7] were the first to obtain an asymptotic for the
fourth moment and used a mollified moment to prove a positive percentage of nonvanishing
at the central point. Rouymi [11] generalized the work of Duke by obtaining asymptotics for
the first three moments for arbitrary weight and prime power level. Balkanova [2] obtained
an asymptotic for the fourth moment in the case of prime power level. In this paper, we
generalize previous results in a different direction, by obtaining asymptotics for the first
two moments with arbitrary weight and squarefree level. [3] conjectured asymptotics for
all even t. However, Theorem 1.3 does not agree with their conjecture, as it appears they
omitted the arithmetic factor coming from primes dividing the level. Following their recipe
for conjectural moments utilizing 1.1 could give improved conjectural moments for even t.

2. Proof of Approximate Orthogonality

We first note that Aq(n,m) is jointly multiplicative. Further, note that A1(pm, pn) =
δ(m = n), so it is suffices to prove the following lemma:

Proposition 2.1. Let p be a prime, and m,n nonnegative integers then

Ap(p
m, pn) =

{
φ(p)
p p−

m+n
2 m ≡ n (mod 2),

0 otherwise.

The first case can be proven directly using properties of the λf . In particular, it follows
from the complete multiplicativity of Fourier coefficients at primes dividing the level, and
the work of Winnie Li, [8] who showed that for primes dividing the level, |λf (p)| = 1√

p , then

taking limits appropriately so that ∆∗q(m,n) converges to Aq(n,m). However, we instead
work directly from (**). We first prove Proposition 2.1 contingent on the following two
lemmas:

Lemma 2.2. For m ≥ n ≥ 0, define

S`(m,n) :=
∑

d1,d2≤`

∑
e1≤min(d1,m)
e2≤min(d2,n)

cd1,`cd2,`δ
(
m+ d1 − 2e1 = n+ d2 − 2e2

)
.
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Then,

S`(m,n) =

{(
2`

`−m−n
2

)
−
(

2`
`−m−n

2
−n−1

)
m ≡ n (mod 2),

0 otherwise.
(3)

Lemma 2.3. Let a ≥ 0 an integer, and |x| < 1
4 . Then

Fa(x) :=

∞∑
k=0

(
2k + a

k

)
xk =

(1−
√

1−4x
2x )a

√
1− 4x

. (4)

In particular, if x = p
(p+1)2

with p ≥ 2, the RHS simplifies to (p+1)a+1

(p−1)pa .

Proof of 2.1. From its definition, we have

Ap(p
m, pn) = δ(m = n)− 1

p+ 1

(
B0,0,0,0(m,n)+δ(n > 0)B1,1,0,0(m,n)+δ(m > 0)B1,0,0,0(m,n)+

δ(m > 1)B1,0,1,0(m,n) + δ(n > 0)B0,1,0,0(m,n) + δ(n > 1)B0,1,0,1(m,n)
)
, (5)

where

Bu′,v′,a′,b′(m,n) :=

∞∑
`=0

( p

(p+ 1)2

)` ∑
d1,d2≤`

pu
′+v′−min (u′,v′) µ(pu+v−2 min (u′,v′))

ν(pu′+v′−2 min (u′,v′))∑
e1≤min(d1,m−2a′−min(u′,v′))
e2≤min(d2,n−2b′−min(u′,v′))

cd1,`cd2,`δ
(
m+ d1 − 2(a′ + e1) = n+ d2 − 2(b′ + e2)

)
.

Under the change of variables m→ m− 2a′−min(u′, v′) and n→ n− 2b′−min(u′, v′), we
have

Bu′,v′,a′,b′ = pu
′+v′−min (u′,v′)µ(pu

′+v′−2 min (u′,v′))

ν(pu′+v′−2 min (u′,v′))
B0,0,0,0(m−2a′−min(u′, v′), n−2b′−min(u′, v′)),

so that (5) becomes

Ap(p
m, pn) = δ(m,n)− 1

p+ 1

(
B(m,n)+δ(n > 0)pB(m−1, n−1)− p

p+ 1
δ(m > 0)B(m,n)−

p

p+ 1
δ(m > 1)B(m− 2, n)− p

p+ 1
δ(n > 0)B(m,n)− p

p+ 1
δ(n > 1)B(m,n− 2)

)
with B = B0,0,0,0. We have B(m,n) =

∞∑̀
=0

(
p

(p+1)2

)`
S`(m,n), which by Lemma 2.2 and

applying Lemma 2.3 to each of the resulting binomial coefficients under a suitable change
of variables gives Lemma 2.1. �
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Proof of 2.3. We begin with the identity
∑∞

k=0

∑∞
j=0

(
j
k

)
xkyj = 1

1−y−xy , which is a direct

consequence of the binomial theorem and geometric series formula after interchanging sums
(the inner sum being finite). Then,

Fa(x) =
∑
k

(
2k + a

k

)
xk =

∞∑
k=0

∞∑
j=0

(
j

k

)
xkδ(j, 2k + a) =

1

2πi

∑
k,j

(
j

k

)
xk
∫
γ
z−1+(2k+a−j)dz,

where γ is a circle centered around the origin of radius r = 1
2x . After interchanging the

order of summation and integration, and applying the geometric series formula, we have,

Fa(x) =
1

2πi

∫
γ

za

z − 1− xz2
dz.

Note that for z inside the curve, and by our assumption that |x| < 1/4 we have |1/z+xz| <
2|x|+ 1

2 < 1 so the geometric series converges. By our assumption that a ≥ 0, and x < 1/4

we have a single pole inside the circle at z = 1−
√

1−4x
2x . This gives a residue of,

(1−
√

1−4x
2x )a

√
1− 4x

.

as claimed. �

To complete the proof of the orthogonality relation, it remains to prove Lemma 2.2, the
proof of which will be the contents of the next section.

3. Chebyshev Polynomials and Coefficients

In proving the explicit formula for the S`(m,n), (2.2), we need several basic properties
of Chebyshev polynomials which we gather in the next few lemmas.

Lemma 3.1 (Product Rule for Chebyshev Polynomials ). For integers m,n ≥ 0 we have,

Um(x)Un(x) =

min(m,n)∑
e=0

Um+n−2e(x).

Lemma 3.2 (Orthogonality of Chebyshev Polynomials). For m,n integers we have,∫ 2

−2
Um

(x
2

)
Un

(x
2

) 1

π

√
1− x2

4
dx = δ(m = n).

Lemma 3.3 (Integral Representation of Catalan Numbers). For integer n > 0 we have,

Cn :=

(
2n

n

)
−
(

2n

n− 1

)
=

1

2π

∫ 4

0
xn
√

4− x
x

dx.

The proof of 3.3 follows from rewriting the Catalan number as a ratio of gamma functions.
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Lemma 3.4 (Integral Representation for S`(m,n)). For m ≥ n ≥ 0 the S`(m,n) have the
following integral representation:

S`(m,n) =

∫ 2

x=−2
Um

(x
2

)
Un

(x
2

)
x2` 1

π

√
1− x2

4
dx.

Proof. We have,

x2` =
∑

d1,d2≤`
cd1,`cd2,`Ud1

(x
2

)
Ud2

(x
2

)
,

so

Um

(x
2

)
Un

(x
2

)
x2` =

∑
d1,d2≤`

cd1cd2Ud1

(x
2

)
Um

(x
2

)
Ud2

(x
2

)
Un

(x
2

)
x2`.

Using Lemma 3.1,

Um

(x
2

)
Un

(x
2

)
x2` =

∑
d1,d2≤`

∑
e1≤min(m,d1)
e2≤min(n,d2)

cd1cd2Um+d1−2e1

(x
2

)
Un+d2−2e2

(x
2

)
.

Integrating both sides from x = −2 to 2 with respect to the measure dµ(x) = 1
π

√
1− x2

4 dx,

and using Lemma 3.4 to simplify the RHS,∫ 2

−2
Um

(x
2

)
Un

(x
2

)
x2` 1

π

√
1− x2

4
dx = S`(m,n). �

Lemma 3.5. For m ≥ 0 even and integer ` ≥ m
2 the following equalities hold:∫ 2

−2
Um

(x
2

)
x2` 1

π

√
1− x2

4
dx =

(
2`

`− m
2

)
−
(

2`

`− m
2 − 1

)
,

and ∫ 2

−2
Um+1

(x
2

)
x2`+1 1

π

√
1− x2

4
dx =

(
2`

`− m
2

)
−
(

2`

`− m
2 − 2

)
Proof: We proceed by induction on m using the recurrence Um+2

(
x
2

)
= xUm+1

(
x
2

)
−

Um
(
x
2

)
. We therefore need to establish the two base cases when m = 0 and when m = 1.

Base Case 1: m = 0
Taking the change of variables x = y2,

S`(0, 0) =

∫ 2

x=−2
x2` 1

π

√
1− x2

4
dx =

1

2π

∫ 4

0
y`
√

4− y
y

dy = C` =

(
2`

`

)
−
(

2`

`− 1

)
.

Base Case 2: m = 1∫ 2

x=−2
x2`+1 1

π

√
1− x2

4
dx =

1

2π

∫ 4

0
y`+1

√
4− y
y

dy = C`+1 =

(
2`+ 2

`+ 1

)
−
(

2`+ 2

`

)
=

(
2`

`

)
−
(

2`

`− 2

)
.
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Even Inductive Step:

∫ 2

x=−2
Um

(x
2

)
Un

(x
2

)
x2` 1

π

√
1− x2

4
dx =

∫ 2

x=−2
Um−1

(x
2

)
x2`+1 1

π

√
1− x2

4
dx

+

∫ 2

x=−2
Um−2

(x
2

)
x2` 1

π

√
1− x2

4
dx

=

(
2`

`− m
2 + 1

)
−
(

2`

`− m
2 − 1

)
−
((

2`

`− m
2 + 1

)
−
(

2`

`− m
2

))
giving the claimed equality.

Odd Inductive Step:

∫ 2

x=−2
Um+1

(x
2

)
x2`+1 1

π

√
1− x2

4
dx =

∫ 2

x=−2
Um

(x
2

)
Un

(x
2

)
x2`+2 1

π

√
1− x2

4
dx

+

∫ 2

x=−2
Um−1

(x
2

)
x2`+1 1

π

√
1− x2

4
dx

=

(
2`+ 2

`− m
2 + 1

)
−
(

2`+ 2

`− m
2

)
−
(

2`

`− m
2 + 1

)
+

(
2`

`− m
2 − 1

)
=

(
2`

`− m
2

)
−
(

2`

`− m
2 − 2

)
From Lemma 3.1 applied to Lemma 3.3 we have S`(m,n) =

∑m+n
d=m−n,d even S`(d, 0) and

the case for general n follows from noting the series

m+n∑
d=m−nd even

(
2`

`− m
2

)
−
(

2`

`− m
2 − 1

)
,

telescopes to
(

2`
`−m−n

2

)
−
(

2`
`−m+n

2
−1

)
.

It is interesting to note the ci,j are linked to the Catalan numbers, a sequence defined

recursively by C0 = 1 and Cn =
n∑
j=0

CjCn−j . The Catalan numbers can also be viewed

as the lead diagonal elements in Catalan’s Triangle (See Fig. 1). Catalan’s triangle is a
triangular array defined recursively, where the left most column is identically 1 and each
entry is the sum of the entry to its left and the one above it (if there is no entry above it,
it is simply equal to the entry to its left).. Then we have ci,j = a(i+j)/2,(i−j)/2 where an,k is

the entry in the nth row and kth column of the Catalan triangle. The entries in Catalan’s
Triangle encode a variety of combinatorial information. See [12] for an extensive list. For
example, an,k is equal to the number of paths below the line y = x on an integer lattice
from the origin to (n, k) in which one can only move up and to the right.
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1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
...

...
...

...
...

...
...

...
. . .

Figure 1. Catalan’s Triangle (equiv. Catalan’s Trapezoid with n=1)

1 1 1
1 2 3 3
1 3 6 9 9
1 4 10 19 28 28
1 5 15 34 62 90 90
1 6 21 55 117 207 297 297
...

...
...

...
...

...
...

...
. . .

Figure 2. Catalan’s Trapezoid with n=3

A natural generalization of Catalan’s triangle is Catalan’s trapezoid, in which the top
row is a sequence of n 1′s, and where the same recurrence relation is satisfied. In this way,
Catalan’s triangle is simply the first Catalan trapezoid. Then we have that S`(m,n) =
Cn+1(`+ m−n

2 , `− m−n
2 ), where Ci(j, k) denotes the entry in the jth row and kth column of

the ith Catalan Trapezoid. This can be proven directly via showing the boundary conditions
are satisfied and the S`(m,n) satisfy the same recurrence as Catalan’s trapezoid, though
the proof is somewhat more involved and less intuitive than the proof given here for the
explicit formula for the S`(m,n). It is interesting to compare Lemma 2.2 and [10, (3.4)],
which links a different form of iterated sums to the Catalan Trapezoid.

4. First Moment

The main ingredients in the calculation of the first moment will be an asymmetric
approximate functional equation for L(s, f) and the approximate orthogonality relation.

Lemma 4.1 (Theorem 5.3 [6]).

L(
1

2
+α, f) =

∞∑
n=1

λf (n)

n
1
2

+α
V 1

2
+α

( n
X

)
+εf

(√
q

2π

)α Γ(u+ k−1
2 + s)

Γ(u+ k−1
2 )

∞∑
n=1

λf (n)

n
1
2
−α

V 1
2
−α

(
nX

q

)
=: S1+S2.
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where

Vu(x) :=
1

2πi

∫
(3)
x−sgu(s)

G(s)ds

s
,

gu(s) :=
Γ(1− u+ k−1

2 )

Γ(u+ k−1
2 )

,

and εf = ±1 is the root number of f, and G(s) is an even, entire function of not more than
polynomial growth.

We follow Duke [4] in taking X = q1+ε so that the second term is small compared to the
first to avoid the complexity introduced the root number.

Corollary 4.2 (Dirichlet series for Aq(n,m)). Let m =
∏
p
pmi and n =

∏
p
pni , then

∑
n,m

Aq(n,m)

nsmu
=
φ(q)

q
ζ(s+ u)

∏
p|q

(1 + p−1−s−u)(1− p−s−u)

(1− p−(2s+1))(1− p−(2u+1))
.

Proof of Corollary 4.2. We have,∑
n,m

Aq(n,m)

nsmu
=
φ(q)

q

∏
p|q

∑
n,m

n+m even

p−
m+n

2

pnspmu

∏
p-q

∑
n,m

δ(m = n)

pnspmu
.

The second part of the equation is simply a geometric series. Splitting the first part of
the equation into the cases based on the parity of m and n and noting that the resulting
sums are the same under the change of variables, m → m + 1, n → n + 1, then applying
the geometric series formula gives,

∑
n,m

Aq(n,m)

nsmu
=
φ(q)

q

∏
p|q

(1 + p−1−s−u)
1

1− p−(2s+1)

1

1− p−(2u+1)

∏
p-q

1

1− p−s−u

The claimed formula follows from factoring out a ζ(s+u) which agrees with the formula
at primes not dividing the level. �

Corollary 4.3. Let n =
∏
p p

ni . Then,∑
n>0

Aq(n, 1)

ns
=
φ(q)

q

∏
p|q

1

(1− p−(2s+1))

Proof. This follows from Corollary 4.2 taking the limit as u→∞ in the real direction. �

Recall,M(1)
α =

∑
f∈H∗k(q)

ωf (S1 +S2). The main term will come from S1 which we consider

first. We have, ∑
f∈H∗k(q)

ωfS1 =
∑
n>0

Aq(n, 1) + Eq(n, 1)

n
1
2

+α+s
V
( n
X

)
= A1 + E1.
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Lemma 4.4. We have,

A1 =
φ(q)

q

∏
p|q

(
1

(1− p−(2+2α))

)
+O(q−1−Re(α)+ε).

Opening up the definition of V gives us,

A1 =
1

2πi

∫
(3)

∞∑
n=1

Aq(n, 1)

n
1
2

+α

( n
X

)−s G(s)ds

s
,

where we take X = q1+ε.
By Corollary 4.3 evaluated at 1

2 + α+ s, this becomes

1

2πi

φ(q)

q

∫
(3)

∏
p|q

(
1

(1− p−(2+2α+2s))

)(
q1+ε

)s G(s)ds

s
.

Shifting contours to (−1−Re(α) + ε) we pick up a residue at s = 0. We then may write,

A1 = R+ J

where

R =
φ(q)

q

∏
p|q

(
1

(1− p−(2+2α))

)
,

J =
1

2πi

φ(q)

q

∫
(−1−Re(α)+ε)

∏
p|q

(
1

(1− p−(2+α+s))

)(
q1+ε

)s G(s)ds

s
.

Since for s on this line, we have∣∣∣∏
p|q

(
1

(1− p−(2+α+s))

) ∣∣∣ < qε.

We conclude,

J = O(q−1−Re(α)+ε).

Finally, S2 = O(q−100) using that for all A, V (1/x) �A (1 + x)−A. This completes the
proof of 4.4.

4.1. Poisson Summation in One Variable. The following two lemmas of [9] that allow
us to bound sums of the cd(`) will be essential.
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Lemma 4.5 (Theorem 7.1 of [9]).

∆∗q(m,n) =
∑
LM=q

µ(L)

ν(L)

∑
`|L∞
`<Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑
a|(m

u
, uv
(u,v)

)

b|(m
u
, uv
(u,v)

)

∑
e1|(d1, m

a2(u,v)
)

e2|(d2, n
b2(u,v)

)

∆q

(
md1

a2e2
1(u, v)

,
d2

b2e2
2(u, v)

)
+O((mnqY )εqY −2γ0)

where γ0 = log(3/2)
log(2) −

1
2 . In practice, we see that this error term can be made small if we

take Y to be a sufficiently large power of q.

and

Lemma 4.6. Define S(L, Y ) =
∑
`|L∞
`<Y

`
ν(`)2

(∑
d|`
c`(d)d1/2

)2

Then,

S(L, Y )� Y ε.

This is [9, 6.14].
By applying Lemma 4.5 and Lemma 4.6, pulling the resulting sum through up to the

sum over n, and using that for n� q1+ε, we have rapid decay from V we get,

E1 = 2πi−k
∞∑
n=1

1

n1/2+α

∑
LM=q

µ(L)

ν(L)

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑

u|(n,L)

u
µ(u)

ν(u)

∑
b|(n

u
,u)

∑
e2|(d1, n

b2u
)

∑
c≡0(M)
c>0

S(n′, 1; c)

c
Jκ−1

(
4π
√
n′

c

)
V 1

2
+α

(
n

q1+ε

)
+O((qY )εqY −2γ0),

where n′ = nd1
b2e22

. The main goal of this section is the following proposition:

Proposition 4.7. Let γ = max(0, Re(α)) then,

E1 = O(q−1−γ+ε).

Via elementary arguments following Section 8 of [9], we have

E1 = 2πi−k
∑
LM=q

µ(L)

ν(L)

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑
u|L

u
µ(u)

ν(u)

∑
a|u

∑
e1|d1

∑
0<n

n≡0(D)

∑
c≡0(M)
c>0

S(δn′, 1; c)

c
Jκ−1

(
4π
√
δn′

c

)
V 1

2
+α

(
n

q1+ε

)
+O((qY )εqY −2γ0)
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where D = au e1
(e1,

u
a

) .

Simplifying a bit further, let A =
d1u(e1,

u
a

)

ae1
, Then,

E1 = 2πi−k
∑
LM=q

µ(L)

ν(L)

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑
u|L

u
µ(u)

ν(u)

∑
a|u

∑
e1|d1

S′+O((qY )εqY −2γ0)

where

S′ :=
∑

c≡0(M)
c>0

∑
n≥1

S(An, 1; c)

n
1
2

+αc
Jκ−1

(
4π
√
An

c

)
V 1

2
+α

(
Dn

q1+ε

)
. (***)

Proposition 4.8. With S′ as in (***),

S′ = O(M−1
√
Aq−γ+ε)

For c�Mq we have via the Weil bound

S′ �
∑

c≡0(M)
c>qM

∑
n<q1+ε

c−
3
2

+ε
√
An+O(q−100)� qε

M

√
A,

which along with Lemma 4.6 gives the claimed bound. It remans to consider c�Mq.
We apply a dyadic partition of unity so that wN (x) is compactly supported on [N, 2N ],∑
N wN (x) ≡ 1 and w

(j)
N (x)�j N

−j . We then write S′ =
∑

c≡0(M)
qM>c>0

∑
N c
−1Sc(N). where

Sc(N) =
∞∑
n=1

S(An, 1; c)
1

n1/2+α
Jκ−1

(
4π
√
An

c

)
wN (n).

Proposition 4.9. With S′ and γ = max(0, Re(α)). as before,

S′ = q−γ+εM−1+εA
1
2

+ε.

This follows immediately from the previous lemma summing Sc(N) over all dyadic N
up to height q1+ε.

The Sc(N) meet the criteria for Poisson summation, so we have

Sc(N) =
∑
k∈Z

aA(k; c)rA(k; c).

with

aA(k; c) :=
∑
x(c)

1

c
S(Ax, 1; c)e(

kx

c
),
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and

rA(k; c) :=

∞∫
0

Jκ−1

(
4π
√
Ax

c

)
wN (x)x−1/2−αe(

kx

c
)dx

We next need the following lemmas that bound the components of Sc(N).

Lemma 4.10. For integer A, k, c we have,

|aA(k; c)| ≤ (A, c)

Proof. Opening the Kloosterman sum we have,

aA(k; c) =
1

c

∑
x(c)

∑∗

y(c)

e

(
Axy + ȳ

c

)
e

(
kx

c

)
.

The sum over x vanishes unless Ay ≡ −k(c). in which case it gives a factor of c. This

implies (A, c)|(k, c), and so A
(A,c)y ≡ −

k
(A,c)

(
c

(A,c)

)
. But then,

y ≡ −
(

A

(A, c)

)
k

(A, c)
(mod

(
c

(A, c)

)
).

There are at most (A, c) such y We conclude |aA(k; c)| ≤ (A, c). Note that if k = 0 we

are left with
∑
x(c)

∑∗

y(c)

e
(
Axy+ȳ

c

)
which vanishes since Ay 6= 0(c), since y is a unit and A is

coprime to c, because A|L, Lis coprime to M, and M |c. This gives that c 6 |A or c = 1. �

We need a definition and Lemma from [9] to bound the stationary part of the Fourier
transform. We say that a family of smooth functions on Rd+, {ωT }T∈F is X-inert for some

X ≥ 0 if for all j = {j1, . . . , jd} ∈ Zd+ we have,

|ωj
T (x1, . . . , xd| �j

1

|x1|j1 · · · |xd|jd
Xj1+···+jd .

Lemma 4.11. Suppose ω is a family of X-inert functions with compact support on [Z, 2Z],

so that ω(j)(t)�
(
Z
X

)−j
. Also, suppose φ(j)(t)� Y

Zj
for Y � X2Qε, Let

I =

∫ ∞
−∞

ω(t)e(φ(t)).

If φ′(t)� Y
Z for all t in the support of ω, then for arbitrarily large K > 0 we have,

I �K Q−K (6)

If φ′′(t) � Y
Z2 for all t in the support of ω, and there exists a t0 ∈ R such that φ′(t) = 0

then

I =
e(φ(t0))√
φ′′(t0)

F (t0) +O(Q−K). (7)

where F is X-inert (depending on K) and K can be chose to be arbitrarily large.

This is Lemma 10.2 of [9].
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Lemma 4.12. For T > 0,

rA(k; c)�

N
−Re(α)N

√
A

c qε
(

1 + |k|N
Tc

)−100
c� T−1

√
Ax

N−Re(α) c√
A
qε
(

1 + |k|
√
N√
A

)−100
c� T−1

√
Ax

We take T = qε

Proof. Case: c � T−1
√
Ax. We will have T = qε. In this range Jκ−1

(
4π
√
Ax
c

)
∼ 4π

√
Ax
c ,

and J
(j)
κ−1(y)�κ min (1, y−j) so that

rA(k; c) = N−Re(α)

∞∫
x=0

hN,α(x)e

(
−kx
c

)
dx.

where h(j) � qε
√
AN
c

(
T (1+|α|)

N

)j
. Further, hN,α(x) is (1 + |α|) is X-inert. (6) along with

our assumption that |Im(α)| < qε gives the claimed bound.

Case: c� T−1
√
Ax.

In this range, Jκ−1(4πy) = y−
1
2
∑
± e(−2y)gκ,±(4πy) where g

(j)
κ,±(4πy) �κ y−j . Taking

y =
√
Ax
c , we have rA(k; c) = c

1
2

(AN)
1
4NRe(α)

∫∞
x=0 e(±2

√
Ax
c −

kx
c )wκ,α(x)dx, where w satisfies

the same type of derivative bounds as w. For k �
√
A√
x
�
√
A√
N
, we have the asymptotic from

Lemma 4.11 (regardless of whether the stationary point is in the support of the weight
function),

rA(k; c) = N−Re(α) c√
A

+O

(
q−100

(
c

|k|
√
N

)2
)
.

On the other hand, if k is not in this range, then the function is oscillatory and (6),

rA(k; c)� c
1
2

(AN)
1
4Nα

(
(1 + |α|)

√
AN

c
+
|k|
√
N

c

)−100

.

We unify these bounds (using our assumption |α| � qε) with

rA(k; c)� N−Re(α) c√
A
qε

(
1 +
|k|
√
N√
A

)−100

.

�

Proof of Propostion 4.9. We now sum our estimates for Sc(N) in the two ranges of c. This
gives∑
T−1
√
Ax≤c≤C

c−1Sc(N)�
√
AN−1

∑
c

c−2
∑
k 6=0

(A, c)M ε

(
1 +
|k|N
c

)−100

� N−Re(α)M−1+εA
1
2

+εCε,
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and∑
c≤T−1

√
Ax

c−1Sc(N)�
√
AN−1

∑
c

c−1
∑
k 6=0

(A, c)
c√
A

(
1 +
|m|
√
N√
A

)−100

� N−Re(α)M−1+εA
1
2

+εCε.

It remains to check the case when k = 0, in which case aA(k; c) vanishes unless M = 1
and c = 1. In this case, aA(k; c) = 1 and we are necessarily in the range when the Bessel

function is oscillatory, so we have the bound rA(k; c)� N−Re(α) c√
A
qε. It with c = 1, it is

clear this bound is sufficient. �

Plugging this estimate back in we are left with,

|E1| � q−1−γ+ε
∑
LM=q

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑
u|L

u
µ(u)

ν(u)

∑
a|u

∑
e1|d1

A
1
2

+ε.

Recall A =
d1u(e1,

u
a

)

ae1
. So,

|E1| � q−1−γ+εY ε
∑
L|q

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)(d1)
1
2 +O((qY )εqY −2γ0).

This is bounded by q−1−γ+ε via an application of Lemma 4.6.

5. Second Moment

Again, the primary tools for studying the second moment will be an approximate func-
tional equation, as well as Corollary 4.2.

Lemma 5.1 (Approximate Functional Equation). For α, β shifts with real part less than
1/2 in absolute value and imaginary part bounded by O(qε), we have

L(
1

2
+ α, f)L(

1

2
+ β, f) =

∑
m,n

λf (m)λf (n)

m
1
2

+αn
1
2

+β
Vα,β(

mn

q
) +

∑
m,n

λf (m)λf (n)

m
1
2
−αn

1
2
−β

V−α,−β(
mn

q
) (8)

where

Vα,β(x) :=
1

2πi

∫
(2)

(x)−sgα,β(s)
G(s)ds

s
,

gα,β(s) := (2π)−2sΓ(α+ s+ κ
2 )Γ(β + s+ κ

2 )

Γ(α+ κ
2 )Γ(β + κ

2 )
.

and

Xα,β :=

(
2π
√
q

)2(α+β) Γ(α+ κ
2 )Γ(β + κ

2 )

Γ(−α+ κ
2 )Γ(−β + κ

2 )
.

with G(s) an even, entire function of at most polynomial growth with G(0) = 1.
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Proof of 5.1. Consider,

Jα,β :=
1

2πi

∫
(2)

Λ(
1

2
+ α+ s)Λ(

1

2
+ β + s)

G(s)ds

s
,

where G(s) is as above.

Λ(
1

2
+ α)Λ(

1

2
+ β) +

1

2πi

∫
(−2)

Λ(
1

2
+ α+ s)Λ(

1

2
+ β + s)

G(s)ds

s
,

Making the change of variable s→ −s we get

Jα,β = Λ(
1

2
+ α)Λ(

1

2
+ β)− J−α,−β.

Rearranging and plugging in the definition of the Λ(√
q

2π

)1+α+β

Γ(1/2+α+
k − 1

2
)Γ(1/2+β+

k − 1

2
)L(1/2+β, f)L(1/2+α, f) = Jα,β+J−α,−β.

Dividing through,

L(
1

2
+ α, f)L(

1

2
+ β, f) =

1

2πi

∫
(2)
qsgα,β(s)L(

1

2
+ α+ s)L(

1

2
+ β + s)

G(s)ds

s

+Xα,β
1

2πi

∫
(2)
qsg−α,−β(s)L(

1

2
− α+ s)L(

1

2
− β + s)

G(s)ds

s

Define,

Iα,β :=
1

2πi

∫
(2)
qsgα,β(s)L(

1

2
+ α+ s)L(

1

2
+ β + s)

G(s)ds

s

Then we have

L(
1

2
+ α, f)L(

1

2
+ β, f) = Iα,β +Xα,βI−α,−β

We expand into the Dirichlet series giving,

Iα,β =
1

2πi

∫
(2)
gα,β(s)

∑
m,n

λf (m)λf (n)

m
1
2

+α+sn
1
2

+β+s
.

Pulling the sums through,

L(
1

2
+ α, f)L(

1

2
+ β, f) =

∑
m,n

λf (m)λf (n)

m
1
2

+αn
1
2

+β
Vα,β(

mn

q
) +

∑
m,n

λf (m)λf (n)

m
1
2
−αn

1
2
−β

V−α,−β(
mn

q
). �

From here forward we place the additional restriction on G that it has zeros at α + β
and −α − β. These zeros will cancel poles of the zeta function that will arise. As in the
calculation of the first moment, we split into the main and error terms,∑

f∈H∗k(q)

Iα,β =
1

2πi

∫
(2)
gα,β(s)

∑
m,n

Aq(n,m) + Eq(n,m)

m
1
2

+α+sn
1
2

+β+s
= Aα,β + Eα,β.
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Proposition 5.2. For ε > 0,

Aα,β = R+O(q−1/2−Re(α)+Re(β)
2

+ε), (9)

where

R =
φ(q)

q
ζ(1 + α+ β)

∏
p|q

(1 + p−2−α−β)(1− p−1−α−β)

(1− p−2(1+α))(1− p−2(1+β))
.

Proof. Via orthogonality,

1

2πi

∫
(2)
gα,β(s)

∑
m,n

Aq(n,m)

m
1
2

+α+sn
1
2

+β+s
qs
G(s)ds

s

=
1

2πi

φ(q)

q

∫
(2)
qsgα,β(s)ζ(1+α+β+2s)

∏
p|q

(1 + p−2−α−β−2s)(1− p−1−α−β−2s)

(1− p−(2(1+α+s)))(1− p−(2(1+β+s)))

G(s)ds

s
.

Shift contours to (−1/2 − Re(α)+Re(β)
2 + ε). Recall that G(s) was selected to have zeros

cancelling the zeta function. We pick up a residue at s = 0. For s on this line we have,∣∣∣∏
p|q

(1 + p−2−α−β−2s)(1− p−1−α−β−2s)

(1− p−(2(1+α+s)))(1− p−(2(1+β+s)))

∣∣∣ < c(ε0)
∏
p|q

2� qε0 .

The remaining integral is O(q−1/2−Re(α)+Re(β)
2

+ε), so we have

R =
1

2πi

φ(q)

q

∫
(2)
gα,β(s)ζ(1+α+β+2s)

∏
p|q

(1 + p−2−α−β−2s)(1− p−1−α−β−2s)

(1− p−(2(1+α+s)))(1− p−(2(1+β+s)))

G(s)ds

s
=

R+O(q−1/2−Re(α)+Re(β)
2

+ε),

as claimed. �

Putting this together, we get Iα,β = R+O(q−1/4−min (Re(α),Re(β))+ε), from which Proposition5.2
follows.

6. Poisson Summation in Two Variables

As in the one variable case, we use Lemmas 4.5 and 4.6 to obtain,

Eα,β = 2πi−k
∑
m,n≥1

1

m1/2+αn1/2+β

∑
LM=q

µ(L)

ν(L)

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑

u|(m,L)
v|(n,L)

uv

(u, v)

µ( uv
(u,v)2

)

ν( uv
(u,v)2

)

∑
a|(m

u
,u)

b|(m
v
,v)∑

e1|(d1, m
a2u

)

∑
c≡0(M)
c>0

S(m′, n′; c)

c
Jκ−1

(4π
√
m′n′

c

)
V 1

2
+α, 1

2
+β

(
mn

q

)
+O((qY )εqY −2γ0),

where m′ = md1
a2e21

and n′ = nd2
b2e22

.
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Applying the same elementary arguments as before and letting, A =
d1u(e1,

u
a

)

ae1
, B =

d2v(e2,
v
b

)

be2
, D1 = au e1

(e1,
e1

a(u,v)
)

and D2 = bv e2
(e2,

e2
b(u,v)

)
this becomes,

Eα,β = 2πi−k
∑
LM=q

µ(L)

ν(L)

∑
`|L∞
`≤Y

`

ν(`)2

∑
d1,d2|`

c`(d1)c`(d2)
∑
u|L

u
µ(u)

ν(u)

∑
a|u

∑
e1|d1

S,

where

S :=
∑

c≡0(M)
c>0

∑
0<m,n

S(An,Bm; c)

c
Jκ−1

(
4π
√
ABmn

c

)
V 1

2
+α, 1

2
+β

(
mnD1D2

q

)
.

For c > (qM) := C, applying the Weil bound to the Kloosterman sums gives the desired
bound.

Otherwise, we apply a partition of unity in both variables wN1,N2(x, y) so that w is
supported on [N1, 2N1]× [N2, 2N2].

Applying Poisson summation gives,

S =
∑

N1,N2≥0

∑
c≡0

0<c≤C

c−1SN1,N2(c),

with

Sc(N1, N2) :=
∑
r,t∈Z

aA,B(r, t; c)rA,B(r, t; c).

where

aA,B(r, t; c) :=
1

c2

∑
x1,x2(c)

S(Ar,Bt; c)e
(rx1

c

)
e

(
tx2

c

)
,

and

rA,B(r, t; c) :=

∞∫
x=0

∞∫
y=0

1

x
1
2

+αy
1
2

+β
wN1,N2(x, y)Jκ−1

(
4π
√
ABxy

c

)
e

(
−rx
c
− ty

c

)
dxdy.

Lemma 6.1. For A,B such that c 6 |A,B we have,

|aA,B(r, t; c)| =

{
(A,B, c) if rt ≡ AB(c),

0 Otherwise.

Note that this implies if r or t equals 0 we are in the latter case, unless c = 1.

Proof. Opening the Kloosterman sum, we have

|aA,B(r, t; c)| � 1

c2

∑
x1,x2(c)

∑∗

y(c)

e

(
Ax1y +Bx2y

c

)
e
(rx1

c

)
e

(
tx2

c

)
.
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From this, the second condition can be read off, since the sum vanishes unless both Ay ≡
−r(c) and Bȳ ≡ −t(c). Supposing this condition is satisfied, we can then simplify via the
triangle inequality to

|aA,B(r, t; c)| ≤
∑∗

y(c)
Ay≡−r(c)
Bȳ≡−r(c)

1.

The first condition implies,

y ≡ − A

(A, c)

r

(A, c)
(mod

c

(A, c)
),

and the second

y ≡ −
(

B

(B, c)

) (
t

(B, c)

)
(mod

c

(B, c)
),

this implies a unique congruency class for y (mod lcm
(

c
(A,c) ,

c
(B,c)

)
) i.e. (mod

(
c

(A,B,c)

)
)

completing the proof. �

Lemma 6.2. For T > 0, any fixed, small ε > 0, for any K > 0,

|rA,B(r, t; c)| �K


T N1N2

√
AB

cN
Re(α)
1 N

Re(β)
2

(
1 + |t|N1

c

)−100 (
1 + |r|N2

c

)−100 √
ABN1N2

c � T,

c

N
Re(α)
1 N

Re(β)
2

√
AB

+O((1 + |α|)T−K)
√
ABN1N2

c � T & |AB − rt| ≤ cr
N2
qε,

(1 + |α|)(1 + |β|)T−K otherwise.

Taking T = qε(1 + |α|)2(1 + |β|)2 for some small ε > 0 makes it clear that only the first
term and the second main term will contribute, since when we sum the others we can still
bound them by an arbitrary power of the level.

Proof of 6.2. For
√
ABN1N2

c � T , we have that Jκ−1(y) ∼ y so that we may write

rA,B(r, t; c) =

√
AB

cN
Re(α)
1 N

Re(β)
2

∫ ∞
x=0

∫ ∞
y=0

vN1,N2,α,β(x, y)e

(
−rx− ty

c

)
dxdy,

where

∂(j)

∂xj
vN1,N2,α(x, y)�j (1 + |α|)N−j1 and

∂(j)

∂yj
vN1,N2,α,β(x, y)�j (1 + |β|)N−j2 .

From here (6) noting v is (1 + |α)(1 + |β|)-inert gives the claimed bound.

For
√
ABN1N2

c � T, we have Jκ−1(4πz) =
∑
± e(2z)gk,±(2z), with g

(j)
κ,±(2z)�κ min(1, z−j).

Then

rA,B(r, t; c) =

√
c

N
3
4

+Re(α)

1 N
3
4

+Re(β)

2 (AB)
1
4

∞∫
x=0

∞∫
y=0

hk,N1,N2,α,β(x, y)e

(
2
√
ABxy

c
− rx

c
− ty

c

)
dxdy.



MOMENTS OF L-FUNCTIONS ASSOCIATED TO NEWFORMS OF SQUAREFREE LEVEL 21

If there is no cancellation between phases, we see that by (6),

rA,B(r, t; c)� N
−Re(α)
1 N

−Re(β)
2 T ((1+|α|)(1+|β|))K

(
1 +

√
ABN1N2

c

)−K (
1 +
|r|N2

c

)−2(
1 +
|t|N1

c

)−2

.

Otherwise, we apply Lemma 4.11 in x with X = (1+|α|) and Q =
(

1 +
√
ABN1N2

c(1+|α|)2(1+|β|)2

)
.

Note that Q� (1 + |α|)T.

rA,B(r, t; c) =
c

N
Re(α)
1 N

1+Re(β)
2

√
AB

∞∫
0

hk,N2,β(y)e

(
yAB

rc
− ty

c

)
dy+O((1+|α|)2K(1+|β|)2KT−K).

If,
|AB − rt|N1

ct
< T,

we bound the integral trivially. Otherwise, we integrate by parts giving

rA,B(r, t; c)� c

N
Re(α)
1 N

Re(β)
2

√
AB

(
1 +
|r|N2

c

)−2(
1 +
|t|N1

c

)−2

((1+|α|)(1+|β|))KT−K .

�

Proposition 6.3. Let γ = min(Re(α), Re(β)). Then,∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

∑
c≡0(M)

c�qε
√
ABN1N2

1

c
sN1,N2(c)

∣∣∣� q−γ+εM−1+ε(AB)
1
2 .

Proof. We have,∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

∑
c≡0(M)

c�qε
√
ABN1N2

1

c
sN1,N2(c)

∣∣∣
� qε√

AB

∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

1

Nα
1 N

β
2

∑
c≡0(M)

c�qε
√
ABN1N2

(A,B, c)
∑
r,t 6=0

|N1N2−rt|≤ ct
N1

qε

rt≡AB(c)

1

� qε(AB)−
1
2

+ε
∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

1

Nα
1 N

β
2

(√
ABN1N2 +AB

)
.

The bound follows taking U = N1N2 and bounding the number of such U by the divisor
function.

It remains to consider the cases when r = 0, t = 0, and r = t = 0. We will show that the
contribution from these cases is bounded by qε. In all of these cases, the sum is 0 unless
c = 1, which implies M = 1. In any of these case, we have that aA,B(r, t) = 1.
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If
√
ABN1N2 � qε, then we have via Lemma 6.2, that rA,B(r, t; 1) � qε(1 + |r|)−2(1 +

|t|)−2. In the case when one is nonzero, the sum converges when we sum over the other.
We may then sum over N1N2 < qε, to complete this case.

Otherwise, if
√
ABN1N2 � qε, by Lemma 6.2 we have that rA,B(r, t; 1)� (1 + |α|)(1 +

|β|)T−K , so we may bound this term by q−100, and after summing up over N1N2 ≤ q1+ε,
this term is still significantly small than qε. �

Proposition 6.4. Let γ = min(Re(α), Re(β)). Then,∑
N1N2<q1+ε

N1,N2 dyadic

∑
c≡0(M)

C≥c�qε
√
ABN1N2

1

c
sN1,N2(c)� q1/2−γ+εεCεM−1+ε(AB)

1
2

Proof.∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

∑
c≡0(M)

C≥c�qε
√
ABN1N2

1

c
sM,N (c)

∣∣∣� qε
√
AB
∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

N1N2

cNα
1 N

β
2

∑
c≡0(M)

C≥c�qε
√
ABN1N2

(A, c)

c2

∑
r,t 6=0
|r|≤ c

N2
|t|≤ c

N1
rt≡AB(c)

1
∣∣∣

� qε
√
AB
∣∣∣ ∑
N1N2<q1+ε

N1,N2 dyadic

N1N2

N
Re(α)
1 N

Re(β)
2

∑
c≡0(M)

qM≥c�qε
√
ABN1N2

(A, c)

c2

(
1 +

c

N1N2

) ∣∣∣
� qεM−1+ε

√
AB

∑
N1N2<q1+ε

N1,N2 dyadic

√
N1N2

N
Re(α)
1 N

Re(β)
2

The bound follows taking U = N1N2 and bounding the number of such U by the divisor
function. �

Using this estimate and lemma 4.6 gives the desired result.

This completes the proof of Theorem 1.3 taking account of the term Xα,βI−α,−β in the
functional equation
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