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Abstract. An SPS-polynomial is a polynomial expressible as a sum of products of sparse univariate poly-

nomials. SPS-polynomials are closely related to depth-4 arithmetic circuits (of recent interest in complexity

theory), and Koiran has shown earlier that new lower bounds for the complexity of the permanent hold if
SPS-polynomials of low complexity have few integer roots. Some effort has been made toward bounding

the number of real roots of SPS-polynomials, but bounding the number of integer roots still appears out of

reach.
Bounding p-adic valuations of the integer roots is a potentially promising, alternative approach that has

yet to be explored. We show that an upper bound for the number of p-adic valuations, in line with Koiran’s

conjectures, can be proven for a particular family of SPS-polynomials. We then point out a larger family of
SPS-polynomials where p-adic methods may be more tractable than real analytic methods.

1. Introduction

The solutions to large systems of polynomials are oftentimes the algebraic analogues to important open
problems. We study the integer solutions to a particular family of sum-product-sparse polynomials. We
relate the number of p-adic valuations of the integer roots to the complexity of computing the permanent of
square matrices.

Definition 1.1. Let k,m, t ∈ N. Define a sum-product-sparse polynomial g ∈ SPS(k,m, t) to be a polynomial
that can be expressed in the form

k∑
i=1

m∏
j=1

gi,j

where gi,j ∈ Z[x1]\{0} is a t-nomial for all i, j. [2]

Theorem 1.2. Define a set S as follows.

S := {i ∈ N | x ∈ Z, g(x) = 0, pi | x, pi+1 6 | x}
If there exists some p such that |S| = (kmt)O(1) for all k,m, t ∈ N and g ∈ SPS(k,m, t), then the permanent
of square matrices cannot be computed by constant-free, division-free arithmetic circuits in polynomial time.
[2]

The bound (kmt)O(1) itself remains unproven for many cases, including k = 2. Therefore, we are interested
in bounding the number of p-adic valuations of the integer roots for a specific polynomial f ∈ SPS(2,m, t).
We are interested to see whether the bound we find for our specific case agrees with the desired generalized
bound.

Conjecture 1.3. Let f = (x + a)M (x + b)N + c with c ∈ Z, M,N ∈ N, and distinct a, b ∈ Z\{0}. Then
there are O(logp(M +N)) distinct p-adic valuations of the integer roots.

We make use of a classical result that relates p-adic Newton polygons and p-adic valuations of the integer
roots.

Definition 1.4. Let f ∈ Z[x1] with f =
∑M+N
i=0 γix

i. Then define the p-adic Newton Polygon of f , denoted
Newtp(f), to be the convex hull of the set {(i, ordp(γi)) | i ∈ {0,M +N} ∩ Z}.

1



2 KAYLA CUMMINGS AND CORY SAUNDERS

Definition 1.5. Given a p-adic Newton Polygon, we call an edge a lower edge if its inner normal vector has
a positive y-coordinate. We rescale the inner normal to be of the form (v, 1). The lower hull of Newtp(f) is
the set of all lower edges of Newtp(f).

Theorem 1.6. (Hensel, Dumas, 1903) Let −m be the slope of the edge of Newtp(f) with scaled inner
normal (v, 1). Then f has v integer roots with valuation m, counting multiplicities. [4]

2. Results

The results of our case study are organized by the table in Figure (1).

Case a, b M,N More assumptions Conjectured bound Proof

1.A ordp(a) = 0 p |M,p 6 | N 2 3

1.B ordp(b) = 0 p 6 |M,p 6 | N logp(M) + logp(N) + 3 3

1.C.i p |M,p | N ordp(M) > ordp(N) ordp(N) + 2 3

1.C.ii ordp(M) = ordp(N) logp(M) + logp(N) + 3 3

2.A.i ordp(a) = ordp(b) p |M,p | N ordp(M) > ordp(N) ordp(N) + 2 7

2.A.ii p | a p | b ordp(M) = ordp(N) sufficiently small 7

2.B p |M,p 6 | N 2 3

2.C p 6 |M,p 6 | N sufficiently small 7

3.A ordp(a) > ordp(b) p 6 |M 3 3

3.B.i p |M ordp(M) 6= ordp(N) + ordp(a)− ordp(b) ordp(M) + 3 7

3.B.ii ordp(M) = ordp(N) + ordp(a)− ordp(b) sufficiently small 7

Figure 1. An exhaustive table of cases and conjectures.

We first outline important ideas we use in the discussion of our sub-cases.

Lemma 2.1. Let f =
∑M+N
i=0 γix

i with γi ∈ Z and i ∈ N. Then every point in the set {(i, ordp(γi) | i ∈
{0,M +N} ∩ Z} will lie on the integer lattice in the first quadrant of the plane.

Proof. We study a family of polynomials whose coefficients γi are integers for all i. Consequently, the p-adic
valuations of every coefficient will be positive. Each coefficient corresponds to a non-negative-degree term.
Thus, (i, ordp(γi)) will be an ordered pair of non-negative integers for all i.

Lemma 2.2. The rightmost vertex of Newtp(f) is (M +N, 0).

Proof. For all f , γM+N = 1. Then for any prime p, ordp(γM+N ) = 0.

Lemma 2.3. Newtp(f) has a maximum of ordp(γi) + (i+ 1) lower edges.

Proof. We consider the y-axis projections of the lower edges between (i, ordp(γi)) and (M+N, 0) and observe
there are at most ordp(γi)) edges between these two points. Then we consider the x-axis projections of the
lower edges between (0, ordp(γ0)) and (i, ordp(γi) and observe there are at most i edges between these two
points. If there is some j 6= M + N such that ordp(γj) = 0, then there is at most one edge adjoining (j, 0)
and (M +N, 0).
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Lemma 2.4. If all but one term in a sum S is divisible by p, then ordp(S) = 0.

Proof. Assume all but one term in a sum S is divisible by p. Then S 6≡ 0 (mod p) and S is indivisible by p.
Thus, ordp(S) = 0.

We also provide a short study of a simpler SPS-polynomial.

Theorem 2.5. (S.) Let g : R → R be defined by g = (x + 1)M − 1 with M ∈ N. Then for any prime p,
there are at most logp(M) + 2 p-adic valuations of the integer roots.

Proof. Consider expanded g.

g = (xM + · · ·+Mx+ 1)− 1

By Lemma (2.3), Newtp(g) has at most ordp(γ1) + 2 = ordp(M) + 2 lower edges.

3. Discussion

3.1. Case 1. These are the sub-cases for which we assume ordp(a) = ordp(b) = 0.

(1) Case 1.A. This is the sub-case for which we assume p |M and p 6 | N , without loss of generality.

Claim. (S.) Newtp(f) has at most 2 lower edges.

Proof. Consider the valuation of γ1.

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= ordp(a
M−1bN−1) + ordp(Na+Mb)

= 0

Because ordp(a) = ordp(b) = 0, we have ordp(a
M−1bN−1) = 0. Additionally, ordp(Na+Mb) = 0 by

Lemma (2.4).

We have shown ordp(γ1) = 0. By Lemma (2.3), Newtp(f) has a maximum of ordp(γ1) + 2 = 2 lower
edges.

(2) Case 1.B. This is the sub-case for which we assume p 6 |M and p 6 | N .

Claim. (S.) Newtp(f) has at most logp(M) + logp(N) + 3 lower edges.

Proof. First assume ordp(γ1) ≤ log(M) + log(N). Then by Lemma (2.3), Newtp(f) has at most
ordp(γ1) + 2 = log(M) + log(N) + 2 lower edges.

Now assume ordp(γ1) > logp(M) + logp(N).

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= ordp(Na+Mb)

Then ordp(Na+Mb) > logp(M) + logp(N).

We also have ordp(M +N) ≤ logp(M) + logp(N).

ordp(M +N) ≤ logp(M +N)

≤ logp(MN)

= logp(M) + logp(N)
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Now consider the quadratic coefficient of f .

ordp(γ2) = ordp

(
aM−2bN−2

2

(
N(N − 1)a2 + 2NMab+M(M − 1)b2

))
= ordp ((Na+Mb) · (Na+Mb− a− b) + ab · (M +N))

Because ordp(M + N) < ordp(Na + Mb), we may factor pordp(M+N) out of the sum. By Lemma
(2.4), the valuation of the remaining part of the sum becomes zero.

We conclude ordp(γ2) = ordp(M + N). By Lemma (2.3), Newtp(f) has at most ordp(γ2) + 3 =
ordp(M + N) + 3 lower edges. This maximum falls under our conjectured bound of logp(M) +
logp(N) + 3.

(3) Case 1.C.i. This is the sub-case for which we assume ordp(M) > ordp(N) without loss of generality.

Claim. (S.) Newtp(f) has at most ordp(N) + 2 lower edges.

Proof. Consider the valuation of the linear coefficient. Let M = µpm and N = νpn with ordp(M) =
m and ordp(N) = n. By assumption, m > n.

ordp(γ1) = ordp(a
M−1bN−1) + ordp(Na+Mb)

= ordp(νp
na+ µpmb)

= ordp(N) + ordp(νa+ µpm−nb)

= ordp(N)

Then by Lemma (2.3) Newtp(f) has at most ordp(γ1) + 2 = ordp(N) + 2 lower edges.

(4) Case 1.C.ii. This is the sub-case for which we assume ordp(M) = ordp(N) 6= 0.

Claim. (S.) Newtp(f) has at most logp(M) + logp(N) + 3 lower edges.

Proof. First assume ordp(γ1) ≤ ordp(M) + ordp(N). Then, by Lemma (2.3), Newtp(f) has a
maximum of ordp(γ1) + 2 = logp(M) + logp(N) + 2 lower edges.

Now assume ordp(γ1) > logp(M) + logp(N) and consider the valuation of the quadratic coefficient.
Let M = µpm and N = νpm with ordp(M) = ordp(N) = m.

ordp(γ2) = ordp

(
aM−2bN−2

2
(N(N − 1)a2 + 2NMab+M(M − 1)b2)

)
= ordp((N

2a2 + 2NMab+M2b2)− (Na2 +Nab+Mab+Mb2) +Nab+Mab)

= ordp((Na+Mb)2 − (Na+Mb)(a+ b) + ab(N +M))

= m+ ordp(p
m(νa+ µb)2 − (νa+ µb)(a+ b) + ab(ν + µ))

= m+ ordp(ν + µ)

We now prove the last line of this computation and show that we can factor pordp(ν+µ) out of the
sum. After doing so, only the third term is indivisible by p, and the remaining sum’s valuation is 0
by Lemma (2.4).

ordp(ν + µ) +m = ordp(N +M)

≤ logp(N +M)

≤ logp(N) + logp(M)
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By our initial assumption, we also have

logp(M) + logp(N) < ordp(γ1)

= ordp(Na+Mb)

= ordp(νa+ µb) +m

Therefore, ordp(ν + µ) ≤ logp(N) + logp(M)−m < ordp(νa+ µb).

Because ordp(ν + µ) < ordp(νa+ µb), we have ordp(γ2) = m+ ordp(ν + µ) and

ordp(γ2) ≤ logp(M) + logp(N)

Thus, by Lemma (2.3), Newtp(f) has at most ordp(γ2) + 3 ≤ logp(N) + logp(M) + 3 lower edges.

3.2. Case 2. These are the sub-cases for which we assume ordp(a) = ordp(b) 6= 0. We first investigate the
shape of Newtp(f) when c = 0, which we call the “base polygon”. Then we let c = −aMbN , which yields
γ0 = 0 and ordp(γ0) = ∞. As ordp(γ0) becomes arbitrarily high, the maximum number of lower edges in
Newtp(f) are revealed.

Claim 3.1. (C.) Let ordp(a) = ordp(b) 6= 0 and c = 0. Then Newtp(f) has one lower edge described by
g : [0,M +N ]→ R defined by:

(1) g(x) = −ordp(a)x+ (M +N) · ordp(a)

Proof.

(1) We verify that the endpoints are given correctly by g.

ordp(γ0) = (M +N) · ordp(a)

= g(0)

ordp(γM+N ) = 0

= g(M +N)

(2) We draw a line from (0, (M +N) · ordp(a)) to (M +N, 0). The slope of this line is −ordp(a), which
is the slope of g.

(3) We show this line is the lower hull of Newtp(f) by verifying ordp(γi) ≥ g(i) for all 0 < i < M +N .

We express γi, letting a = αpj and b = βpj with ordp(a) = ordp(b) = j.

γi =

(
N

i

)
aMbN−i + · · ·+

(
M

i

)
aM−ibN

=

(
N

i

)
(αpj)M (βpj)N−i + · · ·+

(
M

i

)
(αpj)M−i(βpj)N

= (pj)M+N−i
((

N

i

)
αMβN−i + · · ·+

(
M

i

)
αM−iβN

)
Now we take the p-adic valuation of γi.

ordp(γi) = (M +N − i) · ordp(a) + ordp

((
N

i

)
αMβN−i + · · ·+

(
M

i

)
αM−iβN

)
≥ (M +N − i) · ordp(a)

= g(i)

We have shown that Equation (1) describes Newtp(f) for the conditions outlined in Claim (3.1).
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We may now assume c = −aMbN .

(1) Case 2.A.i. This is the sub-case for which we assume ordp(M) > ordp(N) with ordp(N) 6= 0.

Claim. (C.) Newtp(f) has at most ordp(N) + 2 lower edges.

Proof Outline. The vertices of the lower hull of Newtp(f) occur at points whose x-coordinates are of
the form xi = pi with 0 ≤ i ≤ ordp(N). There are ordp(N) edges adjoining these vertices. The extra
2 edges come from those adjoining (1) the points corresponding to the constant and linear terms,
and (2) the points corresponding to γpordp(N) and γM+N .

First observe the p-adic valuation of γ1. Let a = αpj and b = βpj with ordp(a) = ordp(b) = j. Also
let M = µpm and N = νpn with ordp(M) = m and ordp(N) = n. We have m > n by assumption.

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= ordp(a
M−1bN−1) + ordp(Mαpj +Nβpj)

= (M +N − 1) · j + ordp((µp
m)α+ (νpn)β)

= g(1) + n+ ordp(µp
m−nα+ νβ)

= g(1) + n

With arbitrarily high ordp(γ0), the lower hull of Newtp(f) will have a vertex at (1, g(1) + ordp(N)).
For each x = pi with 1 ≤ i ≤ ordp(N), the lower hull of Newtp(f) will have a vertex at (pi, g(pi) +
ordp(N)− i). We verify that ordp(γpn)) = g(pn).

ordp(γpn) = ordp

((
N

pn

)
aMbN−p

n

+ · · ·+
(
M

pn

)
aM−p

n

bN
)

= (M +N − pn) · ordp(a) + ordp

((
N

pn

)
αp

n

+ · · ·+
(
M

pn

)
βp

n

)
= g(pn) + ordp

(
ν · pn

pn

(
N − 1

pn − 1

)
αp

n

+ · · ·+ µ · pm

pn

(
M − 1

pn − 1

)
βp

n

)
= g(pn) + ordp

((
N − 1

pn − 1

)
ναp

n

+ · · ·+
(
M − 1

pn − 1

)
βp

n

µpm−n
)

Every term in the sum is divisible by p except for
(
N−1
pn−1

)
ναp

n

. By Lemma (2.4), the valuation of

the last sum is 0.

Now we consider every xi with 1 < i < n. As i increments, the power of p that we are able to factor
out of γpi decrements. Leftover pieces of the proof involve

• confirming ordp
(
N−1
pn−1

)
= 0,

• rigorously verifying ordp(γpi) = g(pi) + ordp(N)− i for 0 < i < ordp(N), and

• verifying ordp(γt) falls on or above the lines connecting the vertices for all pi−1 < t < pi and
for all i.

(2) Case 2.A.ii. This is the sub-case for which we assume ordp(M) = ordp(N) 6= 0. Claim. (C.)
Newtp(f) has a sufficiently small number of lower edges.

Discussion. This case is tricky. The bound will be similar to Case 2.A.i, but we cannot use the same
methods of determining vertices because the valuations are not as clean.

(3) Case 2.B. This is the sub-case for which we assume p |M and p 6 | N without loss of generality.

Claim. (C.) Newtp(f) has a maximum of two edges.
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Proof. If ordp(γ0) is arbitrarily high, then ordp(γi) remains unaffected for all i. We show that
ordp(γ1) = g(1). Let a = αpj and b = βpj with ordp(a) = ordp(b) = j.

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= ordp(a
M−1bN−1) + ordp(N(αpj) +M(βpj))

= (M +N − 1) · j + ordp(Nα+Mβ)

= g(1) + ordp(Nα+Mβ)

We have assumed that p | M and p 6 | N . By Lemma (2.4), ordp(Nα + Mβ) = 0. Thus, Newtp(f)
has at most two edges described by

(0, ordp(γ0))←→ (1, g(1))

(1, g(1))←→ (M +N, 0)

(4) Case 2.C. This is the sub-case for which we assume ordp(M) = ordp(N) = 0.

Claim. (C.) The number of edges in the lower hull of Newtp(f) is sufficiently small.

Discussion. Consider the p-adic valuation of an arbitrary coefficient. Let a = αpj and b = βpj with
ordp(a) = ordp(b) = j.

ordp(γi) = ordp

((
N

i

)
aMbN−i + · · ·+

(
M

i

)
aM−ibN

)
= ordp(a

M−ibN−i) + ordp

((
N

i

)
(αpj)i + · · ·+

(
M

i

)
(βpj)i

)
= (M +N − i) · j + ordp

((
N

i

)
αi + · · ·+

(
M

i

)
βi
)

= g(i) + ordp

((
N

i

)
αi + · · ·+

(
M

i

)
βi
)

The valuation of the sum is rather ambiguous. Our usual method of finding the lowest i for which
ordp(γi) = g(i) would be highly dependent on individual values of a, b,M , and N .

3.3. Case 3. These are the sub-cases for which we assume ordp(a) > ordp(b). Similarly to Case 2, we
investigate our base polygon, the shape of Newtp(f) when c = 0.

Claim 3.2. (C.) Let ordp(a) > ordp(b) and c = 0. Then Newtp(f) has two lower edges described by
h : [0,M +N ]→ R defined by:

(2) h(x) =

{
−ordp(a)x+ (M · ordp(a) +N · ordp(b)) if 0 ≤ x ≤M
−ordp(b)x+ (M +N) · ordp(b) if M ≤ x ≤M +N

Proof. Let a = αpj and b = βpk with ordp(a) = j and ordp(b) = k. By assumption, j > k.

(1) We verify that the endpoints are given correctly by h.

ordp(γ0) = M · ordp(a) +N · ordp(b)

= h(0)

ordp(γM+N ) = 0

= h(M +N)

(2) We show that there is always a point at (M,N · ordp(b)) by showing ordp(γM ) = N · ordp(b).
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First we express γM .

γM =
∑

j,k|j+k=M

(
M

j

)(
N

k

)
aM−jbN−k

= bN +

(
M

M − 1

)(
N

1

)
abN−1 + · · ·+

(
M

1

)(
N

M − 1

)
aM−1bN−M+1 +

(
N

M

)
aMbN−M

= (pk)N
(
βN +MN(αpj−k)βN−1 + · · ·+M

(
N

M − 1

)
(αpj−k)M−1βN−M+1 +

(
N

M

)
(αpj−k)MβN−M

)
If N < M , note that the final M −N terms will be 0. We take the p-adic valuation of both sides.

ordp(γM ) = N · ordp(b) + ordp

(
βN +MN(αpj−k)βN−1 + · · ·+

(
N

M

)
(αpj−k)MβN−M

)
The p-adic valuation of the sum will equal 0 by Lemma (2.4). Therefore, ordp(γM ) = N · ordp(b).

(3) We assume (M,N · ordp(b)) is a vertex of Newtp(f). Thus we draw a line from (0,M · ordp(a) +N ·
ordp(b)) to (M,N · ordp(b)), then another line from (M,N · ordp(b)) to (M + N, 0). The slopes of
these two lines are −ordp(a) and −ordp(b), respectively, which are the slopes of the two pieces of h.
We assume these two lines are the lower hull of Newtp(f).

(4) We show that ordp(γi) ≥ h(i) for 0 < i < M . First we express γi.

γi =

(
N

i

)
aMbN−i + · · ·+

(
M

i

)
aM−ibN

=

(
N

i

)
αM (pj)M−i(pj−kpk)iβN−i(pk)N−i + · · ·+

(
M

i

)
αM−i(pj)M−iβN (pk)N

= (pj)M−i(pk)N
((

N

i

)
αMβN−i(pj−k)i + · · ·+

(
M

i

)
αM−iβN

)
We take the p-adic valuation of γi.

ordp(γi) = (M − i) · ordp(a) +N · ordp(b) + ordp

((
N

i

)
αMβN−i(pj−k)i + · · ·+

(
M

i

)
αM−iβN

)
≥ (M − i) · ordp(a) +N · ordp(b)

= h(i)

If p 6 |
(
M
i

)
, then it is possible for all but one term in the sum to be divisible by p and its valuation

could be 0. Thus, ordp(γi) ≥ h(i).

(5) We show that ordp(γi) ≥ h(i) for M < i < M +N . First we express γi.

γi =

(
N

i

)
aMbN−i + · · ·+

(
M

i

)
aM−ibN

=

(
N

i

)
(αpj−k)M (pk)M (βpk)N−i + · · ·+

(
M

i

)
(αpj−k)M−i(pk)M−i(βpk)N

= (pk)M+N−i
((

N

i

)
(αpj−k)MβN−i + · · ·+

(
M

i

)
(αpj−k)M−iβN

)
We take the p-adic valuation of γi.

ordp(γi) = (M +N − i) · ordp(b) + ordp

((
N

i

)
(αpj−k)MβN−i + · · ·+

(
M

i

)
(αpj−k)M−iβN

)
≥ (M +N − i) · ordp(b)

Because M < i < M + N , some monomial term in the sum will have (pj−k)M−M = 1. Thus, it is
possible for all but one term in the sum to be divisible by p and its valuation could feasibly be 0 by
Lemma (2.4). Thus, ordp(γi) ≥ h(i).
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We have shown that Equation (2) describes Newtp(f) for the conditions outlined in Claim (3.2).

We may now assume c = −aMbN .

(1) Case 3.A. This is the sub-case for which we assume p 6 |M .

Claim. (C.) Newtp(f) has a maximum of 3 lower edges.

Proof. If ordp(γ0) is arbitrarily high, then ordp(γi) remains unaffected for all i. We show that
ordp(γ1) = h(1). Let a = αpj and b = βpk with ordp(a)j and ordp(b) = k. By assumption, j > k.

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= ordp(a
M−1bN−1) + ordp(N(αpj) +M(βpk))

= (M − 1) · j +N · k + ordp(Nαp
j−k +Mβ)

= g(1) + ordp(Nαp
j−k +Mβ)

We have assumed that p 6 | M . By Lemma (2.4), ordp(Nαp
j−k + Mβ) = 0. Thus, Newtp(f) has at

most three edges described by

(0, ordp(γ0))←→ (1, h(1))

(1, h(1))←→ (M,N · ordp(b))

(M,N · ordp(b))←→ (M +N, 0)

(2) Case 3.B.i. This is the sub-case for which we assume p | M . We also make the assumption that
ordp(M) 6= ordP (N) + ordp(a)− ordp(b).

Claim. (C.) Newtp(f) has at most ordp(M) + 3 lower edges.

Proof Outline. First assume ordp(M) < ordp(N)+ordp(a)−ordp(b). Similarly to Case 2.A.i, vertices
of Newtp(f) occur at points whose x-coordinates are of the form xi = pi with 0 ≤ i ≤ ordp(M).
There are ordp(M) edges adjoining these vertices. The extra 3 edges come from those adjoining (1)
the points corresponding to the constant and linear terms, (2) the points corresponding to γpordp(M)

and γM , and (3) the points (M,N · ordp(b)) and (M +N, 0).

We consider the vertices of Newtp(f) whose x-coordinates are of the form xi = pi with 0 ≤ i ≤
ordp(M). First observe the p-adic valuation of γ1. Let a = αpj and b = βpk with ordp(a) = j and
ordp(b) = k. By assumption, j > k. Also let M = µpm and N = νpn with ordp(M) = m and
ordp(N) = n. By assumption, m < n+ j − k.

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= ordp(a
M−1bN−1) + ordp(N(αpj) +M(βpk))

= (M − 1) · ordp(a) +N · ordp(b) + ordp(ναp
n+j−k + µpmβ)

= h(1) +m+ ordp(ναp
n+j−k−m + µβ)

= h(1) +m

Newtp(f) has a vertex at (1, h(1) + ordp(M)). For each xi = pi with 1 ≤ i ≤ ordp(M), Newtp(f)
will have a vertex at (pi, h(pi) + ordp(M)− i).

The gaps in this proof are identical to those in the proof outline of Case 2.A.i.

Now, if we assume ordp(M) > ordp(N) + ordp(a)−ordp(b), the valuation of the linear term changes.

ordp(γ1) = h(1) + ordp(ναp
n+j−k + µβpm)

= h(1) + n+ j − k + ordp(να+ µβpm−n−j+k)

= h(1) + n+ j − k
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Newtp(f) has a vertex at (1, h(1) + ordp(N) + ordp(a)− ordp(b)). For each xi = pi with ordp(N) +
ordp(a)−ordp(b)+1 ≤ i ≤ ordp(M), Newtp(f) will have a vertex at (pi, h(pi)+ordp(N)+ordp(a)−
ordp(b)− i). This is because, as i increments, the highest power of p that we are able to factor out of
γpi decrements. There are ordp(N) + ordp(a)−ordp(b) edges adjoining every xi; thus, we can bound
the number of lower edges by ordp(N) + ordp(a)− ordp(b) + 3. However, because we have assumed
ordp(M) > ordp(N) + ordp(a) − ordp(b), we prefer the upper bound of ordp(M) + 3 that does not
rely on ordp(a) or ordp(b).

(3) Case 3.B.ii. This is the sub-case for which we assume p |M with ordp(M) = ordp(N) + ordp(a)−
ordp(b).

Claim. (C.) Newtp(f) has a sufficiently small number of lower edges.

Discussion. We can see where this case becomes complicated by reevaluating the p-adic valuation of
the linear coefficient. Let a = αpj and b = βpk with ordp(a) = j and ordp(b) = k. Also let M = µpm

and N = νpn with ordp(M) = m and ordp(N) = n. By assumption, m = n+ j − k.

ordp(γ1) = ordp(Na
MbN−1 +MaM−1bN )

= (M − 1) · ordp(a) +N · ordp(b) + ordp(ναp
n+j−k + µβpm)

= h(1) +m+ ordp(να+ µβ)

The valuation of να + µβ is ambiguous. We also encounter ambiguous valuations at every point
that would have been a vertex if not for the assumption ordp(M) = ordp(N) + ordp(a) − ordp(b).
Although a bound evades us for this case, it seems that the bound will be similar to that of Case
3.B.i.

3.4. Looking Forward. We have established some cases towards our desired upper bound of O(logp(M +
N)). In the future, we seek to rigorously prove some of the bounds that we have conjectured and to tighten
some of the bounds that we have already proven. We also see potential to generalize our conjectured bound
to SPS-polynomials of the form (x+ a1)M1(x+ a2)M2 · · · (x+ an)Mn + b.

4. A Multivariate Approach (S.)

We now transition to using p-adic techniques to look at a system of multivariate polynomials. We are again
interested in finding an upper bound on the number of unique valuations of the roots. First, let us establish
some notation. [2]

Definition 4.1. Let A1, · · · , An ∈ Zn be finite subsets. Let F := (f1, · · · , fn) be a system of polynomials
with fi ∈ Cp[x1, · · · , xn] and Supp(fi) ∈ Ai. Let A :=

⋃
iAi and t := #A.

F is defined as a system of n equations in n variables. Each fi ∈ F has supports coming from a finite subset
Ai. Let us also define a special set on which we want to find sufficiently good upper bounds.

Definition 4.2. Define Vp(A1, · · · , An) to be the maximum cardinality of ordp

(
Z∗Cp

(F )
)

ranging all F as

given in Definition 4.1 with Z∗Cp
(F ) finite.

We are particularly interested in the case with t = n+ 2 because every multivariate system of this form can
be reduced to a univariate polynomial in a certain SPS class.

Theorem 4.3. With the notation as in Definitions 4.1 and 4.2, if [t = n+2 and for all pairs (i, j) with i 6= j
then any n-tuple of vectors emanating from ai (or aj) to some ak (with k /∈ (i, j)) are linearly independent],

then Vp(A1, · · · , An) ≤ max{2, bn2 c
n

+ n}. [2]

Note: From now on we refer to “the genericity hypothesis” as the assumption on the linear independence of
the support vectors in Theorem 4.3. One point of progress we made this summer was improving the wording
of the genericity hypothesis.
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4.1. Reducing the problem. We may reduce to the problem to looking a specific arrangement of hy-
perplanes in Rn. We obtain this reduction of the problem by the proof of Theorem (4.3) in [2]. The
key ingredients in the proof are Gaussian Elimination and the Fundamental Theorem of Tropical Geome-
try.

We now describe the particular set-up of the problem. Given F := (f1, · · · , fn) with fi ∈ Cp[x1, · · · , xn]
with A =

⋃
i Supp(fi) and t = n + 2. We also assume that the system cannot be reduced an earlier case

outlined in the paper.

For each pair (i, j) with i 6= j we have a configuration Ci,j comprised of n objects each of which we will call
a “hyper-Y”. First, we apply our Guassian Elimination technique outlined in [2] to the system F and obtain
n equations where each of the n other terms may be expressed as linear combinations of xai and xaj . Call
these n equations the system G := (g1, · · · , gn).

Now, each hyper-Y is specified by one of the gi’s. More specifically, it is exactly Tropp(gi). We therefore
have that Tropp(gi) is dual to a triangle. The rays of the hyper-Y are inner normals of the triangle formed
by the three support vectors in gi. We may regard a hyper-Y as (three rays emanating from a point in a
plane)×Rn−1.

In each hyper-Y we make the distinction between the three rays. One we will call the “stem” and the other
two will be the “wings.” It can be shown based on the geometry of the triangle that the two wings will
emanate from opposite halves of the hyperplane given by the stem.

In the configuration Ci,j , we will have n hyper-Y’s in which n stems will be parallel to a common hyperplane.
Therefore, we may loosely partition Rn into up to n+ 1 “slabs” which are separated by up to n hyperplanes.
We refer to the up to n hyperplanes that separate these slabs as “slab boundaries.” We want to explore
bounds on the intersections of these n hyper-Y’s.

Lemma 4.4. Any intersection of the Tropp(gi) that does not occur on a slab boundary must be a non-
degenerate intersection. [2]

Therefore, we only need to study possible intersections which occur on the slab boundaries. Note that
non-degenerate intersections may occur on slab-boundaries.

4.2. Degenerate intersections within slab boundaries. We are most concerned about degenerate in-
tersections that occur within the slab boundaries because there are an infinite number of points in the
intersection but we want a finite bound.

The first tool is to redo the Gaussian Elimination on a coefficient matrix of F where the terms are permuted,
that is consider a different Ci′,j′ . This gives a completely different set of tropical varieties. Even if there is a
degenerate intersection within this set, we can determine that the valuations of the roots of F is contained
in the intersection of degenerate intersections of the different Ci,j ’s. The genericity hypothesis also gives us
some information on the linear independence of the hyperplanes in the Ci,j ’s.

We are most interested in proving the following conjecture.

Conjecture 4.5. The bound from Theorem 4.3 can be improved to be sub-exponential. It can be improved
to the sharp bound n+ 1. [2]

Currently, we are working on reducing the possible intersection of the hyper-Y’s into manageable cases. One
of the nicest cases is the following:

Lemma 4.6. Consider the case in which each configuration Ci,j yields that all of the stems of the hyper-Y’s
lie exactly on the common hyperplane for all pairs (i, j) with i 6= j . Then an upper bound on the number
of distinct valuations of the roots of F is 2n+ 1.

Proof. Consider such a configuration Ci,j in which all stems of the hyper-Y’s lie on the common hyperplane.
Within each Ci,j , there is a maximum of one (n − 1)-dimensional intersection and two points (one non-
degenerate intersection on either half of the common hyperplane). If we take the intersection over n such
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Ci,j , then we have n hyperplanes which intersect in at most one point thanks to the genericity hypothesis.
Therefore, there are a maximum of 2n+ 1 possible points.

We consider other such extreme cases, such as when a configuration yields bn2 c slab boundaries where two
hyper-Y stems share a slab boundary. The original bound in [2] does not consider the fact that the degenerate
intersections possible on the slab boundaries will not be full hyperplanes. In the future, we will use this
observation to our benefit as we work towards our overall bound of n+ 1.
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[1] Gouvêa, Fernando Q. p-adic Numbers: An Introduction, 2nd ed. New York: Springer-Verlag, 1997.
[2] P. Koiran, N. Portier, and J. M. Rojas. “Counting Tropically Degenerate Valuations and p-adic Approaches to the Hardness

of the Permanent,” submitted for publication.

[3] Rojas, J. Maurice. “Efficiently Estimating Norms of Complex Roots of Multivariate Polynomials.”
[4] Weiss, Edwin. Algebraic Number Theory. New York: McGraw-Hill Book Company, Inc., 1963. Print.


