Bounding the Number of Distinct p-adic Valuations of Integer Roots of Certain SPS-Polynomials

Kayla Cummings

Pomona College
July 18, 2016

Motivation

Definition

For $f \in \mathbb{Z}[x], \tau(f)$ is the minimum number of steps required to build f from 1 and x.

Motivation

Definition

For $f \in \mathbb{Z}[x], \tau(f)$ is the minimum number of steps required to build f from 1 and x.

Example. Let $f=(1+x)^{8}$. Then $\tau(f) \leq 4$.

$$
1, x \rightarrow 1+x \rightarrow(1+x)^{2} \rightarrow(1+x)^{4} \rightarrow(1+x)^{8}
$$

Motivation

Definition

For $f \in \mathbb{Z}[x], \tau(f)$ is the minimum number of steps required to build f from 1 and x.

Example. Let $f=(1+x)^{8}$. Then $\tau(f) \leq 4$.

$$
1, x \rightarrow 1+x \rightarrow(1+x)^{2} \rightarrow(1+x)^{4} \rightarrow(1+x)^{8}
$$

Shub-Smale τ Conjecture (1993)

If there exists an absolute constant c such that for all $f \in \mathbb{Z}[x]$, the number of integer roots of f is bounded above by $\tau(f)^{c}$, then $P_{\mathbb{C}} \neq N P_{\mathbb{C}}$.

Motivation

Definition (Koiran, Portier, Rojas)

An SPS-polynomial g is a polynomial expressible as $\sum_{i=1}^{k} \prod_{j=1}^{m} g_{i, j}$ with nonzero, univariate $g_{i, j}$ having at most t monomial terms for all i, j.

Motivation

Definition (Koiran, Portier, Rojas)

An SPS-polynomial g is a polynomial expressible as $\sum_{i=1}^{k} \prod_{j=1}^{m} g_{i, j}$ with nonzero, univariate $g_{i, j}$ having at most t monomial terms for all i, j.

Theorem (Koiran, Portier, Rojas)

Let f be an SPS-polynomial. If there exists a prime p such that, for all f, the cardinality of the set of distinct p-adic valuations of the integer roots is $(k m t)^{O(1)}$, then the permanent of square matrices cannot be computed in polynomial time.

Project Goal

> Conjecture
> Let $f \in \mathbb{Z}[x]$ defined as $f=(x+a)^{M}(x+b)^{N}+c$ be a univariate polynomial with a and b distinct nonzero integers, c an integer, and M and N positive integers. Then f has $O\left(\log _{p}(M+N)\right)$ distinct p-adic valuations of the integer roots.

Background

Definition

Let $f \in \mathbb{Z}\left[x_{1}\right]$ with $f=\sum_{k} \gamma_{k} x^{k}$. Then define the p-adic Newton Polygon of f to be the convex hull of $\left(k, \operatorname{ord}_{p}\left(\gamma_{k}\right)\right)$ for all k.

Background

Definition

Let $f \in \mathbb{Z}\left[x_{1}\right]$ with $f=\sum_{k} \gamma_{k} x^{k}$. Then define the p-adic Newton Polygon of f to be the convex hull of $\left(k, \operatorname{ord}_{p}\left(\gamma_{k}\right)\right)$ for all k.

Definition

The lower hull of $\operatorname{Newt}_{p}(f)$ is the set of all edges of $\operatorname{Newt}_{p}(f)$ whose inner normals have positive y-coordinates.

Background

Definition

Let $f \in \mathbb{Z}\left[x_{1}\right]$ with $f=\sum_{k} \gamma_{k} x^{k}$. Then define the p-adic Newton Polygon of f to be the convex hull of $\left(k, \operatorname{ord}_{p}\left(\gamma_{k}\right)\right)$ for all k.

Definition

The lower hull of $\operatorname{Newt}_{p}(f)$ is the set of all edges of $\operatorname{Newt}_{p}(f)$ whose inner normals have positive y-coordinates.

Theorem (Hensel, Dumas, 1903)

Let $-m$ be the slope of the edge of $\operatorname{Newt}_{p}(f)$ with scaled inner normal $(v, 1)$. Then f has at most v integer roots with valuation m, counting multiplicities.

A Concise Case: p divides neither a nor b

Theorem (Saunders)

Assume $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b)=0$ and $\operatorname{ord}_{p}(M)>\operatorname{ord}_{p}(N)>0$. Then there are no more than $\operatorname{ord}_{p}(N)+2$ edges in the lower hull of $\operatorname{Newt}_{p}(f)$.

A Concise Case: p divides neither a nor b

Theorem (Saunders)

Assume $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b)=0$ and $\operatorname{ord}_{p}(M)>\operatorname{ord}_{p}(N)>0$. Then there are no more than $\operatorname{ord}_{p}(N)+2$ edges in the lower hull of $\operatorname{Newt}_{p}(f)$.

Intuition

- We have $\operatorname{ord}_{p}\left(\gamma_{1}\right)=\operatorname{ord}_{p}(N)$. Consider the first j such that $\operatorname{ord}_{p}\left(\gamma_{j}\right)=0$ and the y-axis projections of the lower edges: there are at most $\operatorname{ord}_{p}(N)$ edges between $\left(1, \operatorname{ord}_{p}(N)\right)$ and $(j, 0)$.

A Concise Case: p divides neither a nor b

Theorem (Saunders)

Assume $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b)=0$ and $\operatorname{ord}_{p}(M)>\operatorname{ord}_{p}(N)>0$. Then there are no more than $\operatorname{ord}_{p}(N)+2$ edges in the lower hull of $\operatorname{Newt}_{p}(f)$.

Intuition

- We have $\operatorname{ord}_{p}\left(\gamma_{1}\right)=\operatorname{ord}_{p}(N)$. Consider the first j such that $\operatorname{ord}_{p}\left(\gamma_{j}\right)=0$ and the y-axis projections of the lower edges: there are at $\operatorname{most}^{\operatorname{ord}_{p}}(N)$ edges between $\left(1, \operatorname{ord}_{p}(N)\right)$ and $(j, 0)$.
- There is at most one edge between $\left(0, \operatorname{ord}_{p}\left(\gamma_{0}\right)\right.$ and $\left(1, \operatorname{ord}_{p}(N)\right)$.

A Concise Case: p divides neither a nor b

Theorem (Saunders)

Assume $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b)=0$ and $\operatorname{ord}_{p}(M)>\operatorname{ord}_{p}(N)>0$. Then there are no more than $\operatorname{ord}_{p}(N)+2$ edges in the lower hull of $\operatorname{Newt}_{p}(f)$.

Intuition

- We have $\operatorname{ord}_{p}\left(\gamma_{1}\right)=\operatorname{ord}_{p}(N)$. Consider the first j such that $\operatorname{ord}_{p}\left(\gamma_{j}\right)=0$ and the y-axis projections of the lower edges: there are at $\operatorname{most}^{\operatorname{ord}_{p}}(N)$ edges between $\left(1, \operatorname{ord}_{p}(N)\right)$ and $(j, 0)$.
- There is at most one edge between $\left(0, \operatorname{ord}_{p}\left(\gamma_{0}\right)\right.$ and $\left(1, \operatorname{ord}_{p}(N)\right)$.
- Suppose $j \neq M+N$. There is at most one edge between $(j, 0)$ and ($M+N, 0$).

A Concise Case: Example

Figure 1: $\operatorname{Newt}_{3}\left((x+14)^{3^{3}}(x+4)^{3^{2}}-14^{27} 4^{9}\right)$

A Base Polytope: p divides a or b

Theorem (C.)

Let p divide a or b with $\operatorname{ord}_{p}(a) \geq \operatorname{ord}_{p}(b)$ and $c=0$.

A Base Polytope: p divides a or b

Theorem (C.)

Let p divide a or b with $\operatorname{ord}_{p}(a) \geq \operatorname{ord}_{p}(b)$ and $c=0$. Then $h:[0, M+N] \rightarrow \mathbb{Z}$ describes the lower hull of $\operatorname{Newt}_{p}(f)$ and is defined by

$$
h(x)= \begin{cases}-\operatorname{ord}_{p}(a) x+\left(M \cdot \operatorname{ord}_{p}(a)+N \cdot \operatorname{ord}_{p}(b)\right) & \text { if } 0 \leq x \leq M \\ -\operatorname{ord}_{p}(b) x+(M+N) \cdot \operatorname{ord}_{p}(b) & \text { if } M \leq x \leq M+N\end{cases}
$$

Example: Base Polygon and Constant Term

Figure 2: $\operatorname{Newt}_{3}\left(\left(x+4 \cdot 3^{4}\right)^{12}\left(x+3^{3}\right)^{8}\right)$ and $\mathrm{Newt}_{3}\left(\left(x+4 \cdot 3^{4}\right)^{12}\left(x+3^{3}\right)^{8}-\left(4 \cdot 3^{4}\right)^{12}\left(3^{3}\right)^{8}\right.$

Using the Theorem

Anchoring the Linear Term

If we can guarantee $\operatorname{ord}_{p}\left(\gamma_{1}\right)=h(1)$, then $\operatorname{Newt}_{p}(f)$ will have at most 3 edges.

Example: Anchored Linear Term

Figure 3: $\operatorname{Newt}_{3}\left(\left(x+5 \cdot 3^{2}\right)^{19}(x+2 \cdot 3)^{5 \cdot 3}-45^{19} 6^{15}\right)$

Anchoring the Linear Term

Guaranteeing the point $(1, h(1))$

Let $a=\alpha p^{j}$ and $b=\beta p^{k}$ with $p \nmid \alpha, p \nmid \beta$, and $j \geq k$.

Anchoring the Linear Term

Guaranteeing the point $(1, h(1))$

Let $a=\alpha p^{j}$ and $b=\beta p^{k}$ with $p \nmid \alpha, p \nmid \beta$, and $j \geq k$.

$$
\operatorname{ord}_{p}\left(\gamma_{1}\right)=h(1)+\operatorname{ord}_{p}\left(N \alpha p^{j-k}+M \beta\right)
$$

Anchoring the Linear Term

Guaranteeing the point $(1, h(1))$

Let $a=\alpha p^{j}$ and $b=\beta p^{k}$ with $p \nmid \alpha, p \nmid \beta$, and $j \geq k$.

$$
\operatorname{ord}_{p}\left(\gamma_{1}\right)=h(1)+\operatorname{ord}_{p}\left(N \alpha p^{j-k}+M \beta\right)
$$

When does $\operatorname{ord}_{p}\left(N \alpha p^{j-k}+M \beta\right)=0$?

Anchoring the Linear Term

Guaranteeing the point $(1, h(1))$

Let $a=\alpha p^{j}$ and $b=\beta p^{k}$ with $p \nmid \alpha, p \nmid \beta$, and $j \geq k$.

$$
\operatorname{ord}_{p}\left(\gamma_{1}\right)=h(1)+\operatorname{ord}_{p}\left(N \alpha p^{j-k}+M \beta\right)
$$

When does $\operatorname{ord}_{p}\left(N \alpha p^{j-k}+M \beta\right)=0 ?$
$■ \operatorname{ord}_{p}(a)>\operatorname{ord}_{p}(b), p \nmid M$
$\square \operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b), p \mid M, p \nmid N$
$\square \operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b), p \nmid M, p \mid N$

Polynomial Roots and p-adic Valuations

Remaining Cases

Case 1: $\operatorname{ord}_{p}(a)>\operatorname{ord}_{p}(b), p \mid M$
Vertices only occur on points whose x-coordinates are powers of p between 1 and M. We can bound the number of edges by $\operatorname{ord}_{p}(M)+3$.

Remaining Cases

Case 1: $\operatorname{ord}_{p}(a)>\operatorname{ord}_{p}(b), p \mid M$
Vertices only occur on points whose x-coordinates are powers of p between 1 and M. We can bound the number of edges by $\operatorname{ord}_{p}(M)+3$.

Case 2: $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b), \operatorname{ord}_{p}(M)>\operatorname{ord}_{p}(N)>0$
Vertices only occur on points whose x-coordinates are powers of p between 1 and N. Then $\operatorname{Newt}_{p}(f)$ has a max of $\operatorname{ord}_{p}(N)+2$ lower edges.

Example: Remaining Case

Figure 4: $\operatorname{Newt}_{3}\left(\left(x+5 \cdot 3^{3}\right)^{3^{4}}(x+2 \cdot 3)^{3^{2}}-135^{81} 6^{9}\right)$

A Tricky Case: $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}(b), p \nmid M, p \nmid N$

Figure 5: $\operatorname{Newt}_{3}\left((x+15)^{14}(x+6)^{19}-15^{14} 6^{19}\right)$

Summary

Our bound of $O\left(\log _{p}(M+N)\right)$ is within reach!

Conclusion

Thank you for listening!

Polynomial Roots and p-adic Valuations

References

- L. Blum, F. Cucker, M. Shub, S. Smale. Complexity and Real Computation. New York: Springer-Verlag, 1998. Print.
- Gouvêa, Fernando Q. p-adic Numbers: An Introduction, 2nd ed. New York: Springer-Verlag, 1997.
- P. Koiran, N. Portier, J. M. Rojas. "Counting Tropically Degenerate Valuations and p-adic Approaches to the Hardness of the Permanent," submitted for publication.
- Rojas, J. Maurice. "Arithmetic Multivariate Descartes' Rule," American Journal of Mathematics, vol. 126, no. 1, February 2004, pp. 1-30.
- Weiss, Edwin. Algebraic Number Theory. New York: McGraw-Hill Book Company, Inc., 1963. Print.

