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Abstract. Phosphorylation systems are ubiquitous chemical mechanisms in biology. Mul-
tisite phosphorylation systems can be distributive or processive. Distributive systems have
been shown to exhibit bistability, while processive systems exhibit global stability. How-
ever the processive result was proven for a specific mechanism of processive phosphorylation
(namely, all catalytic reactions are reversible.) Accordingly, we generalize this result to allow
for processive phosphorylation networks that are reversible or reversible or involve product
inhibition. Specifically we create an all-encompassing processive system that encapsulates
each of these schemes. By appealing to monotone systems theory we prove that the dy-
namical system arising from mass-action kinetics has a unique steady state and that it is a
global attractor. We also establish the same result for a more general system using graph
reductions and recent graph-theoretic stability criteria.
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1. Introduction

1.1. Phosphorylation Mechanisms. A biological process of great importance, phosphory-
lation is the enzyme-mediated addition of a phosphate group to a protein substrate, which of-
ten modifies the function of the substrate. This basic mechanism is: S0+E ↔ S0E → S1+E,
where Si is the substrate with i phosphate groups attached and E is the enzyme.

Additionally, many substrates have more than one site at which phosphate groups can be
attached. Such multisite phosphorylation may be distributive or processive, or somewhere
in between [10, 14]. In distributive phosphorylation, each binding of substrate and enzyme
results in at most one addition of a phosphate group. In contrast, in processive phosphory-
lation, when an enzyme catalyzes the addition of a phosphate group, phosphate groups are
added to all sites before the enzyme and substrate dissociate.

Most studies on the mathematics of multisite phosphorylation have focused on multisite
phosphorylation under a sequential and fully distributive mechanism. These systems admit
bistability [12] and oscillations [9].

As for processive phosphorylation, in [6], Conradi and Shiu considered the following pro-
cessive n-site phosphorylation/dephosphorylation network (also called the “futile cycle”):

S0 +K
k1
/ S0K

k2

o
k3
/ S1K

k4

o
k5
/ . . .

k6

o
k2n−1

/ Sn−1K
k2n

o
k2n+1

// Sn +K

Sn + F
`2n+1

/ SnF
`2n

o
`2n−1

/ . . .
`2n−2

o
`5
/ S2F

`4

o
`3
/ S1F

`2

o
`1
// S0 + F

(1)

and proved that the resulting systems, in contrast with distributive systems, do not admit
bistability or oscillations, and, moreover, exhibit rigid dynamics: each invariant set contains
a unique steady state, which is a global attractor [6]. This result was proven by generalizing
a result of [2]. Using other means, Rao [15] and Marcondes de Freitas, et al. [8] have
established the same result.

However, there are other possible mechanisms for processive phosphorylation, the following
being the most common [17]:

S0 +K
k1
/ S0K

k2

o
k3
// S1K

k5
// . . .

k2n−1
// Sn−1K

k2n

o
k2n+1

// Sn +K

Sn + F
`2n+1

/ SnF
`2n

o
`2n−1`2n−1

// . . .
`5
// S2F

`3
// S1F

`1
// S0 + F

(2)

Here, only the first reaction is reversible.
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As another example, we incorporate product inhibition, in which an intermediate is added
before the substrate is form in each component. A processive realization of this scheme is

S0 +K / S0Ko // S1K // . . . // Sn−1K // SnK
/ Sn +Ko

Sn + F / SnFo // . . . // S2F // S1F // S0F
/ S0 + F

`∗
o

(3)

There are distributive systems in the literature with such product inhibition [13, Scheme 2].
The final reaction in each of the two components is inhibited via a back-reaction.

Can the global stability result for (1) be generalized to incorporate the other mechanisms
(2) and (3)? We accomplish this in this paper (Theorem 3.2) by introducing a fully-reversible
system which encapsulates (1), (2), (3) We prove that the dynamical system associated with
this system is globally stable. This result generalize results of Angeli and Sontag [2], Conradi
and Shiu [6], Rao [15] and Marcondes de Freitas, et al. [8]

1.2. More Details on Global Stability Results. Chemical reaction networks, such as
phosphorylation, are represented as directed graphs that connect chemical species. Using
mass-action kinetics, the dynamics of the system can be realized as a system of ODEs. At
steady state concentration, each ODE in the system vanishes and so the concentration of
each chemical species is constant. A primary focus of chemical reaction network research
is to understand the stability of steady states, that is whether or not concentrations tend
to approach a steady state. If all concentrations in some neighborhood of the steady state
approach the steady state as t→∞, a steady state is locally asymptotically stable.

Many authors, including [5] and [15], have established that the 1-site phosphorylation has
a unique steady state, and it is globally asymptotically stable, meaning that any trajectory
starting in the positive orthant converges to the steady state as t→∞. As mentioned above,
this result was generalized by Angeli and Sontag who showed that that the processive n-site
system (1) admits a unique steady state and it is globally stable [6].

We further generalize this result by establishing that our fully-reversible network is globally
stable. The first proof extends the result in [6], which applies results from monotone systems
theory from [2]. This involves assuming a change of coordinates, manipulating matrices and
computing the Jacobian matrix of the system and applying graph-theoretic criteria.

We also construct a second network, the all-encompassing model, which further generalizes
the fully-reversible model, allowing for m reaction components, rather than 2. Furthermore,
each component is allowed to have a different number of binding sites. We prove that this
model is globally stable using recent graph-theoretic criteria developed by Marcondes de
Freitas, et al. in [1] and [8]. Using the scheme in [1], the chemical reaction system is used
to construct two labeled graphs, an R-graph and SR-graph. If these graphs satisfy certain
conditions, the chemical system is globally stable. In [8] it was shown that we can perform a
reduction on the original system by removing intermediate species before using the stability
criterion. This makes for a faster proof of global stability. Also, this new result generalizes
a recent global stability result due to Rao [15].

1.3. Outline. In section 2 we define a chemical reaction network and explain how mass-
action kinetics produces an associated dynamical systems. In section 3, we develop our
fully-reversible n-site, 2-component network, which captures systems that are reversible,
irreversible and have product inhibition. The global stability of the system is established
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in section 4. Section 5 explains the all-encompassing m-component model and in section 6
we prove it is globally stable using graph-theoretic reductions. To conclude we comment on
how and our models compare with other phosphorylation systems in section 7. Appendix
A provides some a brief explanation of how to establish the technical detail of bounded
persistence.

2. Background

This section provides an overview of how mass-action kinetics produces a dynamical system
for a given chemical reaction network. Our setup is based on [6] and [8].

2.1. Chemical Reaction Networks. As an example, consider the chemical reaction

A+B
κ
// 3A+ C (4)

The graph of (4) is a chemical reaction network. The vertices A + B and 3A + C are
complexes, which are linear combinations of individual species. The complex on the left side
of a reaction is called a reactant and the complex on the right side of a reaction is a product.

An irreversible reaction is denoted by a unidirectional arrow (→). A reaction with a
double arrow, such as X � Y denotes a forward reaction X → Y and a backward reaction
Y → X. Together these reactions are known as a reversible reaction. The parameter κ is
known as a rate constant. In the case of (4), one unit of A and one unit of B react at rate
proportional to their concentrations, with constant of proportionality κ, to form three units
of A and one unit of C.

More formally, we express as G chemical reaction network with n species as the triple
G = (S, C,R), which consists of

(1) a finite nonempty set of species S = S1, . . . , Sn,
(2) a set of complex vectors C of the form (α1, . . . , αn) ∈ Rn

≥0, representing the weights
on a linear combination species, and

(3) a set of reversible (X � Y ) and irreversible (X → Y ) reactions R
Consider the species y = (α1, . . . , αn) and y′ = (α′1, . . . , α

′
n). For a reaction y → y′ or y � y′,

we call y − y′ the reaction vector, which describes the net change in species.
In biology, phosphorylation is a chemical mechanism that adds a phosphate group. The

1-site phosphorylation is shown below.

Example 2.1. The following network (called the “futile cycle”) describes 1-site phosphory-
lation:

S0 +K
k1
/ S0K

k2

o
k3
// S1 +K

S1 + F
`3

/ S1F
`2

o
`1
// S0 + F

(5)

The key players in this network are a kinase (K), a phosphatase (F ), and a substrate (S0).
The substrate S1 is obtained from the unphosphorylated protein S0 by attaching a phosphate
group to it via an enzymatic reaction catalyzed by K. Conversely, a reaction catalyzed by
F removes the phosphate group from S1 to obtain S0. The intermediate complexes S0K
and S1F are the bound enzyme-substrate complexes.
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2.2. Mass-Action Kinetics. Consider the example (4). Let xA, xB and xC be the con-
centrations of the species as functions of time. Assuming the reaction follows mass-action
kinetics, the species A and B react proportionally to the product of their concentrations
with constant of proportionally κ. Noting that the reaction yields a net change of two units
in the amount of A, we obtain the first differential equation in the following system:

d

dt
xA = 2κxAxB

d

dt
xB = −κxAxB

d

dt
xC = κxAxB .

The other equations follow similarly. The mass-action differential equations that a network
defines are comprised of a sum of the monomial contribution from the reactant of each
chemical reaction in the network; these differential equations will be defined by equations (6–
7).

Letting m denotes the number of reactions, where we count each pair of reversible reactions
only once, the stoichiometric matrix Γ is the s×m matrix whose k-th column is the reaction
vector of the k-th reaction (in the forward direction if the reaction is reversible), i.e., it is
the reaction vector yj − yi if k indexes the (forward) reaction yi → yj. The choice of kinetics
is encoded by a locally Lipschitz function R : Rs

≥0 → Rm that encodes the reaction rates of
the m reactions as functions of the s species concentrations (a pair of reversible reactions
is counted only once – in this case, Rk is the forward rate minus the backward rate). The
reaction kinetics system defined by a reaction network G and reaction rate function R is
given by the following system of ODEs:

dx

dt
= ΓR(x) . (6)

For mass-action kinetics, which is the setting of this paper, the coordinates of R are:

Rk(x) =

{
κijx

yi if k indexes an irreversible reaction yi → yj
κijx

yi − κjixyj if k indexes a reversible reaction yi ↔ yj
(7)

A chemical reaction system refers to the dynamical system (6) arising from a specific
chemical reaction network G and a choice of rate parameters (κ∗ij) ∈ Rr

>0 (recall that r
denotes the number of reactions) where the reaction rate function R is that of mass-action
kinetics (7).

The stoichiometric subspace is the vector subspace of Rs spanned by the reaction vectors
yj − yi (where (i, j) is an edge of G), and we will denote this space by S:

S := R{yj − yi | (i, j) ∈ E} . (8)

Note that in the setting of (6), one has S = im(Γ). In the earlier example reaction shown
in (4), we have y2 − y1 = (2,−1, 1), which means that with each occurrence of the reaction,
two units of A and one of C are produced, while one unit of B is consumed. This vector
(2,−1, 1) spans the stoichiometric subspace S for the network (4). Note that the vector
dx

dt
in (6) lies in S for all time t. In fact, a trajectory x(t) beginning at a positive vector

x(0) = x0 ∈ Rs
>0 remains in the stoichiometric compatibility class (also called an “invariant
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polyhedron”), which we denote by

P := (x0 + S) ∩ Rs
≥0 , (9)

for all positive time. In other words, this set is forward-invariant with respect to the dynam-
ics (6). A steady state of a reaction kinetics system (6) is a nonnegative concentration vector
x∗ ∈ Rs

≥0 at which the ODEs (6) vanish: ΓR(x∗) = 0. We distinguish between positive steady

states x∗ ∈ Rs
>0 and boundary steady states x∗ ∈

(
Rs
≥0 \ Rs

>0

)
. A system is multistationary

(or admits multiple steady states) if there exists a stoichiometric compatibility class P with
two or more positive steady states. In the setting of mass-action kinetics, a network may
admit multistationarity for all, some, or no choices of positive rate constants κij.

For an example of how mass-action kinetics generates a dynamical system, see [6], which
explains how to write-down the ODE system (6) for the 1-site phosphorylation system in
Example 2.1.

3. A Fully-Reversible Model

In this section we introduce a generalized version of the n-site processive phosphorylation
system, which we call the fully-reversible model. This system captures different variants
on processive phosphorylation. In contrast to system (1), the system studied in [6], we allow
the final concentrations of Sn+K and S0 +F to be inhibited by rate constants k∗ and `∗ and
we allow rate constants of back-reactions to be zero. The reaction network for our model is
shown below.

S0 +K
k1
/ S0K

k2

o
k3
/ S1K

k4

o
k5
/ . . .

k6

o
k2n−1

/ Sn−1K
k2n

o
k2n+1

/ Sn +K
k∗
o

Sn + F
`2n+1

/ SnF
`2n

o
`2n−1

/ . . .
`2n−2

o
`5
/ S2F

`4

o
`3
/ S1F

`2

o
`1
/ S0 + F

`∗
o

(10)

where

k2, k4, . . . , k2n, `2, `4, . . . , `2n, k
∗, `∗ ≥ 0,

k1, k3, . . . , k2n+1, `1, `3, . . . , `2n+1 > 0.

This model is general enough that it reduces to several well-defined systems under certain
conditions, leading to the following proposition, with systems numbered as they appear in
section 1.

Proposition 3.1. The fully-reversible model (10) encompasses the following phosphorylation
systems:

(1) Reversible systems, which allow for binding in both directions.
(2) Irreversible systems, which have no back-reactions after initial binding.
(3) Systems with product inhibition.

The conditions that we impose on (10) to find these variations are listed in Table 1.
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System variant Conditions
(n− 1)-site system with product inhibition n ≥ 2 and k∗, `∗ > 0
Reversible n-site system `∗, k∗ = 0 and

k2, k4, . . . , k2n, `2, `4, . . . , `2n > 0
Irreversible n-site system `∗, k∗ = 0

Table 1. The restrictions on rate constants that reduce the all-encompassing
model to different variants of processive phosphorylation systems.

Remark 1. Notice that the reversible system described in Table 1 is equivalent to the n-site
system (1), studied in [6]. Clearly the model (10) also captures other theoretical families of
distributive sessions, including, for example, irreversible n-site systems with product inhibi-
tion. In section 7 we remark on other types of phosphorylation systems.

Our first main theorem is that this system is globally stable. It follows from Proposition
3.1 that the systems described in Table 1 are globally stable.

Theorem 3.2. The dynamical system (6) of the all-encompassing model (10) arising from
mass-action kinetics has a unique positive steady state and it is a global attractor.

We prove this result in Section 4.

3.1. The ODE System. The variables in the fully reversible mode (10) are ordered ac-
cording to Table 2.

x1 x2 x3 x4 x5 x6 x7 x8 · · · x2n+3 x2n+4

K F S0 Sn S0K S1F S1K S2F · · · Sn−1K SnF

Table 2. Assignment of variables and species of the processive n-site network (10)

Using mass-action kinetics we can concisely express the system as the matrix equation
(6). The stoichiometric matrix, whose columns span the stoichiometric subspace, is given by
the (2n+ 2)× (2n+ 4) matrix

Γ =
[
e5 − (e1 + e3) | . . . , e2i+5 − e2i+3, . . . | e4 + e1 − e2n+3,

e2 + e3 − e6 | . . . , e2i+4 − e2i+6, . . . | e2n+4 − (e2 + e4)
] (11)

where i = 1, . . . , n − 1. The stoichiometric matrix (and, by extension, the stoichiometric
subspace) is the same as in [6]. The following Lemma is proved in [6]:

Lemma 3.3. The stoichiometric matrix Γ for (10) has rank 2n− 1.

Remark 2 (Conservation relations). By Lemma 3.3, ker(Γt) = S⊥ is three-dimensional. A
particular basis is formed by the rows of the following matrix:

A =

 1 0 0 0 1 0 1 0 · · · 1 0
0 1 0 0 0 1 0 1 · · · 0 1
0 0 1 1 1 1 1 1 · · · 1 1

 . (12)

This basis has the following interpretation: the total amounts of free and bound enzyme or
substrate remain constant as the dynamical system (6) progresses. In other words, the rows
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of A correspond to the following conserved (positive) quantities (recall the species ordering
from Table 2):

Ktot = x1 + (x5 + x7 + · · ·+ x2n+3),

Ftot = x2 + (x6 + x8 + · · ·+ x2n+4) ,

Stot = x3 + x4 + · · ·+ x2n+4 .

The reaction rate function arising from mass-action kinetics for (10) is,

R(x) =



k1x1x3 − k2x5
k3x5 − k4x7
k5x7 − k6x9

...
k2n−1x2n+1 − k2nx2n+3

k2n+1x2n+3 − k∗x1x4
`2n+1x2x4 − `2nx2n+4

`2n−1x2n+4 − `2n−2x2n+2

`2n−3x2n+2 − `2n−4x2n
...

`3x8 − `2x6
`1x6 − `∗x2x3



. (13)

Using the stoichiometric matrix (11) and the reaction rate function (13) we can write the
dynamical system arising from the fully-reversible system (10) as the equation (6). We
appeal to this formulation to prove global stability in the next section.

4. Proof of Global Stability Using Monotone Systems Theory

In this section, we prove that each steady state of the processive network taken with mass-
action kinetics is a global attractor of the corresponding compatibility class (Theorem 4.2).
The argument uses the same scheme as in [6]. Much of section 4.1 is adapted from [6] and
the proof in section 4.2 extends that in [6, §6].

4.1. Setup. We begin by recalling the setup in Angeli and Sontag [2, §3]. We consider
any reaction kinetics system with s chemical species and m reactions (where each pair of
reversible reactions is counted only once) given by ẋ = ΓR(x), as in (6). Each such system
together with a vector σ ∈ Rs

≥0 (viewed as an initial condition of (6)) defines another ODE
system:

ċ = fσ(c) := R(σ + Γc), (14)

with associated state space (which is sometimes called the space of “reaction coordinates”)

Xσ =
{
c ∈ Rm | σ + Γc ∈ Rs

≥0
}
. (15)

For simplicity, we introduce z := σ + Γc. For i = 1, . . . , n, define

Zi :=

[
z2i+3

z2i+4

]
=

[
σ2i+3 + ci − ci+1

σ2i+4 + c2i+2 − c2i+1

]
.
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Using the stoichiometric matrix (11), we have

z =



z1
z2
z3
z4
Z1

Z2
...
Zn


=



σ1 + cn+1 − c1
σ2 + cn+2 − c2n+2

σ3 + cn+2 − c1
σ4 + cn+1 − c2n+2

Z1

Z2
...
Zn


. (16)

To state Lemma 4.1 below, we require the following definition.

Definition 4.1.

(1) The nonnegative orthant Rm
≥0 defines a partial order on Rm given by c1 < c2 if

c1 − c2 ∈ Rm
≥0. Also, we write c1 � c2 if c1 < c2 with c1 6= c2, and c1 � c2 if

c1 − c2 ∈ Rm
>0.

(2) A dynamical system with state space X ⊆ Rm and flow denoted by φt(c) (for initial
condition c) is monotone with respect to the nonnegative orthant Rm

≥0 if the partial
order arising from Rm

≥0 is preserved by the forward flow: for c1, c2 ∈ X, if c1 ≥ c2 then
φt(c1) ≥ φt(c2) for all t ≥ 0. A dynamical system is strongly monotone with respect
to the nonnegative orthant if it is monotone with respect to the nonnegative orthant
and, additionally, for c1, c2 ∈ X, the relation c1 � c2 implies that φt(c1)� φt(c2) for
all t > 0.

The lemma below is due to Angeli and Sontag [2, Corollary 3.3]. We note that it is stated
in the setting of monotonicity with respect to the nonnegative orthant (cone), but the result
and the theory of monotone systems more generally extend to other cones and moreover to
partial orders not necessarily arising from a cone [4].

The following lemma was originally proven by Angeli and Sontag in [2, Corollary 3.3] and
appeals to monotone systems theory to establish the presence of a unique, globally stable
steady state.

Lemma 4.1 (Angeli and Sontag). Let R, Γ, and σ be as in the setup above. Assume that:

(1) the stoichiometric matrix Γ has rank m − 1, with kernel spanned by some positive
vector (i.e., in Rm

>0),
(2) every trajectory of the reaction kinetics system (6) is bounded, and
(3) the system ċ = fσ(c) defined in (14) is strongly monotone with respect to the nonneg-

ative orthant.

Then there exists a unique η = ησ ∈ Rs
≥0 such that for any initial condition µ ∈ Rs

≥0 that is
stoichiometrically compatible with σ (i.e., µ− σ ∈ Im(Γ)), the trajectory x(t) of the reaction
kinetics system (6) with initial condition x(0) = µ converges to η: lim

t→∞
x(t) = η.

In [6], Lemma 4.1 is used to prove that the n-site processive system is globally stable
provided all rate constants are strictly positive. We expand the proof to establish the global
stability of the fully-reversible model (10).

4.2. Proof of Stability of the Fully-Reversible Model. We restate Theorem 3.2 more
precisely below.
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Theorem 4.2. Let n be a positive integer. For any chemical reaction system (6) arising
from the processive n-site network (10) and any choice of rate constants,

(1) each stoichiometric compatibility class P contains a unique steady state η,
(2) η is a positive steady state, and
(3) η is the global attractor of P.

Proof. Let σ ∈ P . The result will follow from Lemma 4.1 applied to this reaction system
and the vector σ, once we verify its three hypotheses.

For hypothesis (1) we note that the rank of Γ is (2n+ 2)− 1 by (3.3).
For hypothesis (2) of Lemma 4.1, every stoichiometric compatibility class is bounded due

to the conservation laws. Thus, trajectories of (6) are bounded.
Finally, we must verify that the system (14) is strongly monotone. We begin by showing

that it is monotone with respect to the nonnegative orthant. It suffices (by Proposition 1.1
and Remark 1.1 in [16, §3.1]) to show that the Jacobian matrix of fσ(c) := R(σ + Γc) with
respect to c has nonnegative off-diagonal entries for all c ∈ Xσ. Note that this reaction rate
function R appeared earlier in (13).

For simplicity, we introduce z := σ + Γc, so by the chain rule, the Jacobian matrix of
fσ(c) := R(σ + Γc) with respect to c is Jaccfσ(c) = JacxR(z) Γ, which is the following
(2n+ 2)× (2n+ 2)-matrix:

(−k1 (z3 + z1)− k2) e1 + k2e2 + k1z3en+1 + k1z1e2n+2

k3e1 − (k3 + k4)e2 + k4e3
k5e2 − (k5 + k6)e3 + k6e4

...
k2n−1en−1 − (k2n−1 + k2n)en + k2nen+1

k2n+1en − k2n+1en+1 − k∗z1(en+1 − e2n+2)− k∗z4(en+1 − e1)
`2n+1z2en+1 + (−`2n+1 (z4 + z2)− `2n) en+2 + `2nen+3 + `2n+1z4en+2

`2n−1en+2 − (`2n−1 + `2n−2)en+3 + `2n−2en+4

`2n−3en+3 − (`2n−3 + `2n−4)en+4 + `2n−4en+5
...

`3e2n − (`3 + `2)e2n+1 + `2e2n+2

`1e2n+1 − `1e2n+2 − `∗z2(en+2 − e1)− `∗z3(en+2 − e2n+2)



. (17)

By inspection of the Jacobian matrix (17), each nonzero off-diagonal entry either is some
`i or kj, which is nonnegative, or has the form kjzi or `jzi (for some i) and such a term is
nonnegative for c ∈ Xσ (recall that the system (14) evolves on the space Xσ defined in (15),
so z = σ + Γc ∈ R2n+2

≥0 .
Now we show that the system (14) is strongly monotone by checking that the Jacobian

matrix (17) is almost everywhere irreducible along trajectories of (14) (see Theorem 1.1
of [16, §4.1]), i.e., that the matrix is almost everywhere the adjacency matrix of a strongly
connected directed graph. By inspection of (17), this directed graph always contains the
paths n + 1 → n → · · · → 1 and 2n + 2 → 2n + 1 → · · · → n + 2, and the only possible
edges between these two components are 1 → 2n + 2 and n + 2 → n + 1, so we must show
that the corresponding two entries in the matrix (17), namely k1z1 = k1(σK − c1 + cn+1) and
`2n+1z2 = `2n+1(σF − cn+2 + c2n+2), are almost everywhere nonzero along trajectories. The
pertinent edges are illustrated in Figure 1.
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1

· · ·
n n+ 1

2n+ 2 2n+ 1

· · ·
n+ 2

k1z1 `2n+1z2

Figure 1. Some of the edges in the directed graph for which the adjacency
matrix is the Jacobian matrix. To show that the graph is strongly connected
we need show that z1(t) and z2(t) are almost everywhere nonzero.

By symmetry between K and F , we need only verify that z1(t) is almost everywhere
nonzero along trajectories. Suppose, on the contrary, that z1(t) ≡ 0 on some non-degenerate
time interval. By the conservation law on the total amount of Kinase, the following sum
must be positive:

σ1 + (σ5 + · · ·+ σ2n+3) = (σ1 − c1 + cn+1) + [(σ5 + c1 − c2) + · · ·+ (σ2n+3 + cn − cn+1)]

= z1(t) + [z5(t) + · · ·+ z2n+3(t)]. (18)

By assumption, z1(t) ≡ 0, so if we show that z5(t), . . . , z2n+3(t) ≡ 0, we have a contradiction.
From (16) we have z1(t) = σ1 − c1(t) + cn+1(t). Taking the derivative implies

0 ≡ −ċ1(t) + ċn+1(t)

= −[k1z1(t)z3(t)− k2z5(t)] + [k2n+1z2n+3(t)− k∗z1(t)z4(t)]
= k2z5(t) + k2n+1z2n+3(t).

We know that k2n+1 > 0 and the k2, z5(t), z2n+3(t) ≥ 0 and so, for the above statement to
hold, it must be true that z2n+3(t) ≡ 0. If n = 1, we are done. Otherwise, we have

0 ≡ z2n+3(t) = σ2n+3 + cn − cn+1. (19)

Taking the derivative of (19) implies

0 ≡ ċn − ċn+1

= [k2n−1z2n+1(t)− k2nz2n+3(t)]− [k2n+1z2n+3(t)− k∗z2(t)z4(t)]
= −k2n−1z2n+1(t).

We know that k2n−1 > 0 and so it follows that z2n+1(t) ≡ 0.
Next we prove inductively that for i = 0, . . . , n− 1,

z2(n−i)+3(t) ≡ 0. (20)

We have established that (20) holds for i = 0 and i = 1 so we are done if n = 2. Otherwise
this is the base case. For the induction hypothesis, suppose that (20) holds for i = k − 2
and i = k − 1, where 2 ≤ k ≤ n − 1. This means z2(n−k)+5(t) ≡ 0 and z2(n−k)+7(t) ≡ 0. By
construction,

0 ≡ z2(n−(k−1))+3(t) = z2(n−k)+5(t) = σ2(n−k)+5 + cn−k+1 − cn−k+2. (21)
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Taking the derivative of (21) implies

0 ≡ ċn−k+1 − ċn−k+2

= k2(n−k)+1z2(n−k)+3(t)− k2(n−k)+2z2(n−k)+5(t)− [k2(n−k)+3z2(n−k)+5(t)− k2(n−k)+4z2(n−k)+7(t)]

= k2(n−k)+1z2(n−k)+3(t).

Because k2(n−k)+1 > 0, we can conclude that z2(n−k)+3(t) ≡ 0.
We have shown that z5(t), . . . , z2n+3(t) ≡ 0, which contradicts the the fact that the con-

servation law (18) must be positive. It follows that z1(t) is almost everywhere nonzero along
trajectories, and the proof is complete. �

5. An All-Encompassing Model

Next we consider a more general class of phosphorylation systems in which there are more
than two substrates and enzymes. We call this the all-encompassing model and it generalizes
the fully-reversible model in two ways:

(1) There are now m components rather than 2, each with its own enzyme Ei and sub-
strate Pi.

(2) Each of the m components has ni binding sites rather than a fixed n.

The all-encompassing reaction network for our model is shown below.

P1 + E1

k11
/ C11

k−11

o
k12
/ C12

k−12

o
k13
/ . . .

k−13

o
k1n1

/ C1n1k−1n1

o

k1(n1+1)
/ P2 + E1

k−1(n1+1)

o

P2 + E2

k21
/ C21

k−21

o
k22
/ C22

k−22

o
k23
/ . . .

k−23

o
k2n1

/ C2n2k−2n1

o

k2(n2+1)
/ P3 + E2

k−2(n2+1)

o

...
...

...

Pm + Em
km1
/ Cm1

k−m1

o
km2
/ Cm2

k−m2

o
km3
/ . . .

k−m3

o
kmnm

/ Cmnmk−mnm

o

km(nm+1)
/ P1 + Em

k−m(nm+1)

o

(22)

where m ∈ Z>0 \ {1} and n1, . . . , nm ∈ Zm>0. We impose the follow restrictions on on rate
constants:

kij > 0 and k−ij ≥ 0 for j = 1, . . . , ni and i = 1, . . . ,m.

There are β := 2m+ (n1 + n2 + · · ·+ nm) species in this network.

Remark 3. The notation we use to express the network in (22) is based on the scheme in
[15], but with a few changes. In keeping with the notion that a Phosphorylation network
has n sites, we use ni to denote the number of sites in component i, whereas mi is used in
[15]. We use m to represent the number of components in the network.

Note that when m = 2 and n1 = n2 the all-encompassing model reduces to the fully
reversible model (10). Hence, by Proposition 3.1, this model captures all of the systems
described in Table 1. Additionally, this model also encompasses systems with more than 2
components and different numbers of sites in each component.

This model generalizes the model in [15] by allowing all back-reactions to be optional
(irreversibility) and by adding a back-reaction to the final reaction (product inhibition).

Lemma 5.1. Let Γ be the stoichiometric matrix associated with the reaction network (22).

The vector of length β with all 1s (denoted by ~1) is an element of ker Γ.
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Proof. Notice that each species in (22) appears in exactly two equations, once as a reactant

and once as a product. Hence, the sum of each row of Γ is 0 and ~1 ∈ ker Γ. �

By Lemma 5.1, nullity(Γ) 6= 0. This implies that nullity(ΓT ) 6= 0, giving the following
corollary:

Corollary 5.2. The network (22) is conservative. That is, it has a conservation relation.

In section 6 we establish that the all-encompassing model (22) is globally stable.Unlike
our proof that the fully-reversible n-site system (10) is stable in section 4, we do not appeal
to the system of ODEs arising from mass-action kinetics. Instead we show appeal to graph-
theoretic criteria that hold on the actual chemical reaction network. This supersedes our
result in section 4 because the all-encompassing model can be reduced to the fully-reversible
model.

6. Proof of Global Stability Using Graph Reduction

In this section we establish that our all-encompassing phosphorylation model (22) is glob-
ally stable using graph reductions. First we explain how to construct two types of graphs
from a chemical reaction network: an SR-graph and an R-graph. A theorem from [8] (origi-
nally from [1]) helps us prove global stability by establishing several graph-theoretic criteria
hold on the SR-graph and R-graph. To simplify the argument we use [8] to remove interme-
diate species to produce a simpler network, on which the same graph-theoretic conditions
can be tested to prove stability. Notation is established in sections 6.1-6.3 to be able to
apply the results in 6.4. Much of the setup in 6.1-6.4 follows from [8].

Notationally, let G = (V,E, L) be a directed, labeled graph, with vertex set V , edge set

E and label set L. Let X, Y ∈ E. A directed edge from X to Y is denoted by
→
XY .

6.1. Assumptions. To apply the machinery in [8], the following formal assumptions about
reaction networks must be satisfied:

(1) y → y′ ∈ R =⇒ y � y′, y′ � y 6∈ R,
(2) y � y′ ∈ R =⇒ y′ � y 6∈ R,
(3) for each y ∈ C, there exists a reaction in C that has y as a reactant or product,
(4) for each i ∈ {1, . . . , n}, there exists an (α1, . . . , αn) ∈ C such that ai > 0.

Some theorems require the following conditions to hold as well:
(G1) There are no auto-catalytic reactions, meaning that no species can appear as both
reactant and product in any reaction.
(G2) Each species in S takes part in at most two reactions in R.
(G3) The network is conservative, that is, it has a conservation law c ∈ Rn

>0.

Remark 4. In [8], assumptions labeled (r1), (r2) and (r3) are also required by some theorems.
According to Remark 1 in [8], these assumptions are satisfied for systems arising from mass-
action kinetics (such as our phosphorylation systems), so they are omitted here.

6.2. Graph Constructions. Here we explain how to construct two types of graphs derived
from a chemical reaction network: directed SR-graphs and R-graphs.

An SR-graph (or directed SR-graph) is a directed graph constructed from a chemical
reaction network. We denote an SR-graph by GSR = (VSR, ESR, LSR). The vertex set VSR is
the union of all species and reactions in the network (hence the name “SR”). The following
rules characterize the edge and label sets:
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(1) If a species S is a reactant in any reaction or a product in a reversible reaction, then
→
SR,

→
RS ∈ ESR.

(2) If a species S is a product in an irreversible reaction, then
→
RS ∈ ESR.

(3) Let SR ∈ E. If S is a reactant, L(S,R) := +. If S is a product, L(S,R) := −. We
assign L(R, S) := L(S,R).

An R-graph is an undirected graph G = (VR, ER, LR) created from the chemical reaction
network. The R-graph can be constructed independently of the SR-graph (which is explained
in [8]), but we may abstract it from the SR-graph using the following rules:

(1) The vertex set VR is the set of reactions in the reaction network.
(2) An edge connects reactions Ri and Rj if there is a length-2 path connecting Ri and

Rj in the SR-graph. It is labeled with the opposite of the product of the labels on
the length-2 edge. An edge may have more than one label, if there are multiple such
paths.

Example 6.1. Consider the 1-site phosphorylation system introduced in Example 2.1. The
directed SR-graph and R-graph for this network are shown below.

R1 R2

R3R4

S0

E

S0E
S1

S1F

F

+

+

-
-

-

+

+
-

+

-
+

-

(a) The SR-graph.

R1 R2

R3R4

+

+

+

+

(b) The R-graph.

Figure 2. The directed SR-graph and R-graph for the 1-site phosphorylation
network.

The attributes of the SR-graph and the R-graph that follow help establish the stability of
a system (explained in section 6.4).

Definition 6.1. An SR-graph is R-strongly connected if there exists a directed path between
every pair of reaction vertices.

Definition 6.2. We say an R-graph has the positive loop property if every simple loop has
an even number of negative edges.

Example 6.2. Again consider the 1-site phosphorylation system introduced in Example 2.1.
The SR- and R-graph are shown in Figure 2. The SR-graph is R-strongly connected because
it contains the loop

R1 → S0E → R2 → S1 → R3 → S1F → R4 → S0 → R1.

The R-graph vacuously has the positive loop property because it has no negative labels.

From [8], we have the following remark.
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Remark 5. Suppose there are p reactions in the system. When the R-graph has the positive
loop property, we can define an orthant cone

K = {(x1, . . . , xp) ∈ Rp | σ1x1, . . . , σpxp ≥ 0} (23)

by defining a sign pattern σ = (σ1, . . . , σp) ∈ {±1}m. Let σ1 := 1. For i ∈ {2, 3, . . . , p},
consider any simple path 1 = i0 − i1 − · · · − ik = i joining 1 and i and set

σi :=
k∏
d=1

LR({Rid−1
, Rid}). (24)

Because the R-graph has the positive loop property, every simple loop has an even number
of negative edges, and so any path from 1 to i will result in the same σi.

If the R-graph has more than one component, the same procedure is applied to each
component, starting by setting σ1 := 1 for the smallest index i ∈ {1, . . . ,m} such that Ri

belongs to that component.

6.3. Removing Intermediates. The novelty of [8] is that we can first simplify a chemical
reaction network by removing intermediate species before checking conditions on the SR-
and R-graphs. This invariance property will be described in section 6.4.

We discuss the required conditions to remove one intermediate. Let G = (S, C,R). For
each y = (α1, . . . , αn) ∈ Rn

≥0 we define the support of a complex y by

supp y := {Si ∈ S | αi > 0}.

To remove an intermediate Y , the following two conditions must be met:

(l1) Y consists of exactly one species and does not appear in any other complex in the
network

(l2) there exist unique complexes y = α1S1 + · · ·+αnSn and y′ = α′1S1 + · · ·+α′nSn such
that
(a) either y → Y or y � Y is a reaction
(b) either Y → y′ or Y � y′ is a reaction

(c) If E := supp y ∩ supp y′, then
∑
Si∈E

αiSi =
∑
Si∈E

α′iSi =: e

(d) y − e→ y′ − e, y′ − e→ y − e, y − e� y′ − e and y′ − e� y − e are not
reactions in R.

Definition 6.3. Given a network G = (S, C,R) and an intermediate Y that satisfies (l1)
and (l2), the reduced reaction network G = (S∗, C∗,R∗) is obtained by removing the
intermediate Y . We define R∗ := R∗c ∪R∗Y , where R∗Y is the subset of reactions in R that
do not have Y as a product or reactant and

R∗Y :=

{
{y − e� y′ − e}, if y � Y, Y � y′ ∈ R
{y − e→ y′ − e}, if y → Y ∈ R, or Y → y′ ∈ R

. (25)

This procedure removes one intermediate. Any number of intermediates may be removed
successively if the conditions above are met at each step.

Example 6.3. As an example, consider the 1-site phosphorylation network (2.1). Taking
S0 +K and S1 +K to be the unique complexes y and y′ required by (l2), we can remove the



16 MITCHELL EITHUN

intermediate S0K, producing the reduced network

S0
// S1

S1 + F / S1Fo // S0 + F

Notice that K is also removed because it is in both S0 +K and S1 +K. If we try to remove
S1F we must take S1 + F and S0 + F to be y and y′. Then e = F , but y′ − e→ y − e is a
reaction, which violates (l2). Thus, we cannot remove any other intermediates.

We use successive removal of intermediates to simplify the all-encompassing model (10)
in the lemma below. Notationally, let /o denote a reaction that may or may not be
reversible.

Lemma 6.1. The following network can be obtained from the all-encompassing model (10)
using successive removal of intermediates:

R∗1 : P1
/ Pmo

R∗2 : Pm + Em
/ Cmnm

o

R∗3 : Cmnm

/ P1 + Emo

(26)

Proof. First we claim that we can remove Cij for i = 1, . . . ,m and j = 1, . . . , ni. Consider
the component with index i ∈ {1, . . . ,m}. We show inductively that we can remove the
intermediates Ci1, Ci2, . . . , Cini

. Notice that these complexes contain one species and do not
appear elsewhere in the system, so assumption (I1) is satisfied.

This component contains the reactions Pi + Ei
/ Ci1o and Ci1

/ Ci2o . The com-

plexes P1 +E1 and Ci2 do not share any species, and they satisfy (I2). Hence, we can remove
the intermediate Ci1. This establishes the base case.

Suppose that we have removed intermediates Ci1, Ci2, . . . , Ci(k−1), where 1 ≤ k ≤ ni.

If k 6= ni, component i contains the reactions Pi + Ei
/ Ciko and Cik

/ Ci(k+1)
o .

Similarly to the base case, the complexes Pi + Ei and Ci(k+1) satisfy (I2), so we can remove
the intermediate Cik. In the case that k = ni, the complexes Pi + Ei and Pi+1 + Ei satisfy
(I2) as well and so Cini

can be removed. The neighboring complexes share Ei and so it is
also removed as per (25).

Successively remove all Cij in each component, except Cmnm , results in the network

P1
/ P2

o

P2
/ P3

o

...
...

Pm−1
/ Pmo

Pm + Em
/ Cmnm

o / P1 + Emo

(27)

Ifm = 2, we are done. Otherwise, we claim that we can successively remove P2, P3, . . . , Pm−1.
Notice that (l1) is satisfied because each Pi is contained in just one complex. We can remove
P2 because P1 and P3 satisfy (l2). If we have removed P2, . . . , Pk−1, where k ≤ m− 1, then
P1 and Pk+1 satisfy (l2). This results in the network (26).

�
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Remark 6. We are able to remove any further intermediates from the reduced network 26
produced by Lemma 6.1. However, there are cases when simpler reductions from the all-
encompassing model (22) are possible. Consider the case that m ≥ 3. Using arguments
similar to those in Lemma 6.1 we could remove all Cij, including Cmmn , and P2, . . . , Pm−2
(if m ≥ 4) to produce the slightly simpler network

P1
/ Pm−1o

Pm−1
/ Pmo

Pm
/ P1

o

No further reductions can be made without violating (l2d).
However, the reduced network (26) is minimal in the m = 2 case. For example, if we try

to remove C2n2 , we would be forced to take the neighbors P2 + E2 and P1 + E2 as y and y′

in accordance with (l2). However, P1
/ P2

o is already a reaction, which violates (l2d).

6.4. Stability Results. Now we can state the results from [8] necessary for our proof. The
following Lemma (Theorems 1 and 2 in [7]) establishes that the desired properties on the
SR- and R-graphs are invariant under successive removal of intermediates.

Lemma 6.2. Let G be a reaction network satisfying (G1) and (G2). Suppose G∗ is a reaction
network obtained from G by successive removal of intermediates. Then G also satisfies (G1)
and (G2) and

(1) the directed SR-graph of G∗ is R-strongly connected if, and only if, the directed SR-
graph of G is strongly connected.

(2) The R-graph of G∗ has the positive loop property if, and only if, the R-graph of G
has the positive loop property.

Furthermore, properties involving the stiochimetric matrix and the cone from Remark 5
are invariant under successive removal of intermediates.

Lemma 6.3. Let G be a reaction network satisfying (G1) and (G2). Suppose G∗ is a reaction
network obtained from G by the successive removal of intermediates. Suppose, in addition,
that the R-graph of G∗ has the positive loop property and the SR-graph of G∗ is R-strongly
connected. Let Γ and Γ∗ be the stoichiometric matrices of G and G∗, and K and K∗ the
orthant cones constructed in Remark 5 from the R-graphs of G and G∗, respectively. Then,

ker Γ ∩K = {0} ⇐⇒ ker Γ∗ ∩K∗ = {0},
and

ker Γ ∩ int K 6= ∅ ⇐⇒ ker Γ∗ ∩ int K∗ 6= ∅.

To state the main stability result we require the following definitions from [7].

Definition 6.4. The ω-limit set is

ω(s0) :=
⋂
τ�0

⋃
t�τ

{σ(t, s0)},

where σ(t, s0) is the trajectory of x(t) starting from initial condition s0.

Definition 6.5. The flow of (6) is said to be bounded-persistent if ω(s0)∩ ∂Rn
≥0 = ∅ for

each s0 ∈ Rn
>0.
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The following lemma (Propositions 2 and 3 in [8]) provides sufficient conditions for both
local and global stability.

Lemma 6.4. Let G be a reaction network satisfying (G1)-(G3) and (r1)-(r3). Suppose that
the flow of (6) is bounded-persistent. Suppose, in addition, that the R-graph of G has the
positive loop property and that the directed SR-graph of G is strongly connected. Then, either,

(1) ker Γ∩K = {0} and there exists a Lebesgue measure-zero set D ⊆ Rn
>0 such that all

solutions to (6) starting in Rn
>0 \D converge to the set of equilibria, or

(2) ker Γ∩ int K 6= ∅ and all solutions of (6) starting in Rn
>0 converge to an equilibrium.

Furthermore, this equilibrium is unique within each stoichometric compatibility class.

Appendix A shows how bounded-persistence can be established with graph-theoretic cri-
teria from [1]. Hence, each condition required by Lemma 6.4 can be shown using graph-
theoretic criteria.

6.5. Proof of Global Stability of All-Encompassing Model.

Theorem 6.5. For any chemical reaction system (6) arising from all-encompassing net-
work (22) and any choice of rate constants,

(1) each stoichiometric compatibility class P contains a unique steady state η,
(2) η is a positive steady state, and
(3) η is the global attractor of P.

Proof. By inspection, the full network (22) satisfies assumptions (G1) and (G2). Assumption
(G3) is satisfied by Corollary 5.2 and assumptions (r1)-(r3) are satisfied by Remark 4.

By Lemmas 6.2, 6.3 and 6.4, it suffices to show that each of the following properties is
satisfied by the reduced network (26) or the original network (22):

(1) the network bounded persistent,
(2) ker Γ ∩ int K 6= ∅,
(3) the SR-graph is R-strongly connected, and
(4) the R graph has the positive loop property.

By Lemma (A.2), the reduced network is bounded-persistent and so property 1 holds.

Applying Lemma 5.1, for the full network (22), we have ~1 ∈ ker Γ∩ int K and so property
2 holds.

The SR- and R-graphs resulting from the reduced network (26) are shown in Figure 3. A
dashed edge is present if and only if the corresponding component in the original network
(22) is fully-reversible.
Regardless of our choice of rate constants, the SR-graph always contains the loop

R∗1 → Pm → R∗2 → Cmnm → R∗3 → P1 → R∗1.

Hence, there exists a directed path between any two reactions and, by definition, the SR-
graph is R-strongly connected.

Notice that each length-two path connecting a pair of reactions in the SR-graphs has edges
with opposite signs. It follows that each edge in the R-graph has a positive label. Thus, the
R-graph has no negative labels and so it vacuously has the positive loop property.

�
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R∗1

R∗2

R∗3

P1

Pm Cmnm
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(a) directed SR-graph

R∗1

R∗2

R∗3

+ +

+

(b) R-graph.

Figure 3. The SR-graph and R-graph of the reduced system (26).

7. Remarks

Here we discuss how our phosphorylation networks compare to other types of phosphory-
lation systems in the literature.

Remark 7. Theorem 6.5 generalizes the stability result established by Rao in [15] by allowing
the final reaction in each component to be reversible and allowing all other reactions to be
either reversible or irreversible. In [15], Rao built a Lyapunov function to prove global
stability. It would be interesting to see if Rao’s proof could easily be extended as another
means to establish Theorem 6.5.

Remark 8. Only recently have there been studies of mixed phosphorylation mechanisms
(partially distributive, partially processive) [3]. Suwanmajo and Krishnan proved that such
a network, in which phosphorylation is distributive and dephosphorylation is processive (or,
by symmetry, vice-versa), is not multistationary [17]. Thus, it always admits a unique steady
state, via a standard application of the Brouwer fixed-point theorem. This proves half of
a conjecture that Conradi and Shiu posed [6]. Perhaps surprisingly, the other half of the
conjecture was disproven: in contrast with processive systems (§1.1), mixed systems need
not be globally stable: they can be oscillatory [17]!

Remark 9. There are examples of phosphorylation networks in the literature that have more
reactions that those in our all-encompassing model (22). In [11], Gunawardena proposes
a 2-site processive phosphorylation network in which, in addition to the usual edges, ES0

reacts to form E + S2:

E + S2

E + S0
/ ES0

o

44

**

E + S1

Unfortunately our proof of Theorem 4.2 cannot be extended to establish the stability of such
networks. Suppose we add an additional reaction edge to the all-encompassing model (10).
It is easy to show that the new reaction vector is a linear combination of other columns in
the stoichiometric matrix Γ. Hence the rank of Γ is invariant under adding new reactions but
no new complexes. However, the number of reactions m increases and so the first condition
of Lemma 4.1 is not met. Thus, our argument does not apply if we add a new reaction but
no new complexes.
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Additionally, our proof of Theorem 6.5, establishing the stability of the all-encompassing
model, cannot be extended in this way because condition (G2) does not allow a complex to
be present in more than two reactions.

Remark 10. We showed that the generalized all-encompassing model is globally stable re-
gardless of whether any of the reactions are reversible or irreversible. If a reversible system
is stable using the graph-theoretic methods in section 6, is it also true that the associated
irreversible system is also stable? We conjecture that this is not true in general.

Remark 11. The graph reduction tools in [8] used to establish global stability of the reduced
all-encompassing model in section 6 do not directly consider dynamical systems arising from
mass-action kinetics. However, the graph-theoretic conditions used are equivalent to some
of those required by [2], which was used to establish stability of the fully-reversible model in
section 4.

More specifically, recall the translated version of the fully-reversible system (14). The
work in [1] establishes that

(1) The R-graph is R-strongly connected if and only if the dynamical system (14) is
monotone,

(2) if condition (1) holds, then the SR-graph is R-strongly connected if and only if the
Jacobian matrix is irreducible along trajectories, and

(3) condition (2) implies the dynamical system (14) is strongly monotone.

This means that the graph conditions described in section 6 could be used to establish that
the fully-reversible system from section 3 is strongly monotone (a condition of 4.1). The
proof would be similar to Example 4 in [8].

Acknowledgments. This work was funded by NSF grant DMS-1460766. The author
would like to thank Dr. Anne Shiu for her guidance at the 2016 Texas A&M University
Mathematics REU. Some parts of this paper are adapted from [6] with permission.

A. Bounded-Persistence

Here we provide the background necessary to understand bounded persistence. Intuitively,
a system is bounded persistent if no trajectory vanishes asymptotically as t→∞. This idea
is formalized by Definition 6.5.

A.1. Definitions. Using [7], bounded persistence can be established through the use of
P-semiflows and siphons, defined below.

Definition A.1. A P-semiflow of a reaction network is any nonzero vector v ∈ Rn
>0 such

that ΓTv = 0, i.e. v is a positive conservation law.

Definition A.2. A nonempty subset of species Σ ⊆ S is called a siphon if every reaction
which has a product in Σ also has a reactant in Σ. A siphon is said to be minimal if it does
not properly contain any other siphon.

Definition A.3. A reaction network is said to have the siphon/P-semiflow property, or
satisfy the siphon/P-semiflow condition, if every siphon contains the support of a P-semiflow.

This theorem from [7] states that the siphon/P-semiflow property is a sufficient condition
to establish bounded-persistence.

Theorem A.1. If a reaction network has the siphon/P-semiflow property, then it is bounded-
persistent.
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A.2. Proof for the Reduced All-Encompassing Model.

Lemma A.2. The reduced network (26) is bounded-persistent.

Proof. Assume the ordering of species P1, Pm, Cmnm , Em. The reduced network (26) has the
stoichiometric matrix

Γ∗ =


−1 0 1
1 −1 0
0 1 −1
0 −1 1

 .
The minimal siphons of the reduced network (26) are Σ1 := {P1, P1, Cmnm} and Σ2 :=

{P1, Cmnm , Em}. By inspection, (0, 0, 1, 1), (1, 1, 1, 0) ∈ ker (Γ∗)T and so (0, 0, 1, 1) and
(1, 1, 1, 0) are P-semiflows. The siphon Σ1 contains the support of (1, 1, 1, 0) and Σ2 contains
the support of (0, 0, 1, 1). Thus, by definition, the reduced network (26) has the siphon/P-
semiflow property. It follows from Theorem A.1 that the reduced network is bounded per-
sistent. �
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