Higher-Dimensional Analogues of the Combinatorial Nullstellensatz

Jake Mundo
July 20, 2016
Swarthmore College

The Schwartz-Zippel Lemma

Schwartz-Zippel Lemma

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

$$
\left|Z(F) \cap S^{n}\right| \leq d|S|^{n-1}
$$

The Schwartz-Zippel Lemma

Schwartz-Zippel Lemma

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

$$
\left|Z(F) \cap S^{n}\right| \leq d|S|^{n-1} .
$$

Why is it useful?

The Schwartz-Zippel Lemma

Schwartz-Zippel Lemma

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

$$
\left|Z(F) \cap S^{n}\right| \leq d|S|^{n-1}
$$

Why is it useful?

- no restrictions on the polynomial

The Schwartz-Zippel Lemma

Schwartz-Zippel Lemma

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

$$
\left|Z(F) \cap S^{n}\right| \leq d|S|^{n-1}
$$

Why is it useful?

- no restrictions on the polynomial
- powerful tool for polynomial identity testing

The Schwartz-Zippel Lemma

Schwartz-Zippel Lemma

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$ be a nonzero polynomial of degree d and let $S \subset K$ be finite. Then

$$
\left|Z(F) \cap S^{n}\right| \leq d|S|^{n-1}
$$

Why is it useful?

- no restrictions on the polynomial
- powerful tool for polynomial identity testing

How tight is the bound?

- roughly, tightest for polynomials of form $\sum_{i} \prod_{j}\left(x_{i}-s_{j}\right)$

Combinatorial Nullstellensatz

Combinatorial Nullstellensatz

Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $S_{i} \subset K$ for $i \in\{1, \cdots, n\}$. Define $G_{i}\left(x_{i}\right)=\prod_{s_{i} \in S_{i}}\left(x_{i}-s_{i}\right)$, and suppose F vanishes on $\prod_{i=1}^{n} Z\left(G_{i}\right)$. Then there are polynomials $H_{1}, \cdots, H_{n} \in K\left[x_{1}, \cdots, x_{n}\right]$ with $\operatorname{deg}\left(H_{i}\right) \leq \operatorname{deg}\left(F_{i}\right)-\operatorname{deg}\left(G_{i}\right)$ such that

$$
F=\sum_{i=1}^{n} G_{i} H_{i} .
$$

Combinatorial Nullstellensatz

Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $S_{i} \subset K$ for $i \in\{1, \cdots, n\}$. Define $G_{i}\left(x_{i}\right)=\prod_{s_{i} \in S_{i}}\left(x_{i}-s_{i}\right)$, and suppose F vanishes on $\prod_{i=1}^{n} Z\left(G_{i}\right)$. Then there are polynomials $H_{1}, \cdots, H_{n} \in K\left[x_{1}, \cdots, x_{n}\right]$ with $\operatorname{deg}\left(H_{i}\right) \leq \operatorname{deg}\left(F_{i}\right)-\operatorname{deg}\left(G_{i}\right)$ such that

$$
F=\sum_{i=1}^{n} G_{i} H_{i} .
$$

- note: we will assume K is a field throughout the talk

Combinatorial Nullstellensatz

Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $S_{i} \subset K$ for $i \in\{1, \cdots, n\}$. Define $G_{i}\left(x_{i}\right)=\prod_{s_{i} \in S_{i}}\left(x_{i}-s_{i}\right)$, and suppose F vanishes on $\prod_{i=1}^{n} Z\left(G_{i}\right)$. Then there are polynomials $H_{1}, \cdots, H_{n} \in K\left[x_{1}, \cdots, x_{n}\right]$ with $\operatorname{deg}\left(H_{i}\right) \leq \operatorname{deg}\left(F_{i}\right)-\operatorname{deg}\left(G_{i}\right)$ such that

$$
F=\sum_{i=1}^{n} G_{i} H_{i} .
$$

- note: we will assume K is a field throughout the talk
- enormous applications in many areas

Combinatorial Nullstellensatz

Combinatorial Nullstellensatz

Second Combinatorial Nullstellensatz (Alon 1999)

Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and suppose that $\operatorname{deg}(f)=\sum_{i=1}^{n} t_{i}$ for nonnegative integers t_{i}. Suppose further that the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in F is nonzero. Then if $S_{1}, \cdots, S_{n} \in K$ with $\# S_{i}>t_{i}$ for each i, there is $s \in S_{1} \times \cdots \times S_{n}$ such that

$$
F(s) \neq 0 .
$$

Two Applications

Two Applications

Cauchy-Davenport Theorem (Cauchy 1813)
If p is a prime, and A, B are two nonempty subsets of \mathbb{Z}_{p}, then

$$
|A+B| \geq \min \{p,|A|+|B|+1\}
$$

Two Applications

Cauchy-Davenport Theorem (Cauchy 1813)
If p is a prime, and A, B are two nonempty subsets of \mathbb{Z}_{p}, then

$$
|A+B| \geq \min \{p,|A|+|B|+1\} .
$$

Theorem (Chevalley 1935, special case)

Let p be a prime, and let $P_{1}, \cdots, P_{m} \in \mathbb{Z}_{p}\left[x_{1}, \cdots, x_{n}\right]$. If
$n>\sum_{i=1}^{m} \operatorname{deg}\left(P_{i}\right)$ and the polynomials P_{i} have a common zero, then they have another common zero.

Two Applications

Cauchy-Davenport Theorem (Cauchy 1813)

If p is a prime, and A, B are two nonempty subsets of \mathbb{Z}_{p}, then

$$
|A+B| \geq \min \{p,|A|+|B|+1\} .
$$

Theorem (Chevalley 1935, special case)

Let p be a prime, and let $P_{1}, \cdots, P_{m} \in \mathbb{Z}_{p}\left[x_{1}, \cdots, x_{n}\right]$. If
$n>\sum_{i=1}^{m} \operatorname{deg}\left(P_{i}\right)$ and the polynomials P_{i} have a common zero, then they have another common zero.

- both classical results follow easily from Combinatorial Nullstellensatz

Our Goal

Our Goal

Goal

To find generalizations of the Combinatorial Nullstellensatz into higher dimensions, that is, to generalize the theorem so that the sets S_{i} can be in more than one dimension and the polynomials G_{i} can be in more than one variable.

Our Goal

Goal

To find generalizations of the Combinatorial Nullstellensatz into higher dimensions, that is, to generalize the theorem so that the sets S_{i} can be in more than one dimension and the polynomials G_{i} can be in more than one variable.

- may have applications analogous to original applications of theorem

Our Goal

Goal

To find generalizations of the Combinatorial Nullstellensatz into higher dimensions, that is, to generalize the theorem so that the sets S_{i} can be in more than one dimension and the polynomials G_{i} can be in more than one variable.

- may have applications analogous to original applications of theorem
- 2×2 case already considered by Mojarrad et al.

Background: The Partition

Background: The Partition

- in original theorem, n is partitioned into $0<1<\cdots<n$

Background: The Partition

- in original theorem, n is partitioned into $0<1<\cdots<n$
- from now on, assume that P is the partition of n given by

$$
0=n_{0}<n_{1}<n_{2}<\cdots<n_{k}=n
$$

Background: The Partition

- in original theorem, n is partitioned into $0<1<\cdots<n$
- from now on, assume that P is the partition of n given by

$$
0=n_{0}<n_{1}<n_{2}<\cdots<n_{k}=n
$$

- now we can have G_{i} higher-dimensional

Background: The Partition

- in original theorem, n is partitioned into $0<1<\cdots<n$
- from now on, assume that P is the partition of n given by

$$
0=n_{0}<n_{1}<n_{2}<\cdots<n_{k}=n
$$

- now we can have G_{i} higher-dimensional

Definition

Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a set of polynomials. We say \mathcal{G} is a P-family of polynomials if $G_{i} \in K\left[x_{n_{i-1}+1}, \cdots, x_{n_{i}}\right]$ for each i.

Background: The Form of the Polynomial

Background: The Form of the Polynomial

- original theorem had special form $F=G_{1} H_{1}+\cdots+G_{n} H_{n}$

Background: The Form of the Polynomial

- original theorem had special form $F=G_{1} H_{1}+\cdots+G_{n} H_{n}$

Definition (Cartesian Polynomial)

Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a P-family of polynomials, and let $F \in K\left[x_{1}, \cdots, x_{n}\right]$. We say F is \mathcal{G}-Cartesian if there are polynomials $H_{1}, \cdots, H_{k} \in K\left[x_{1}, \cdots, x_{n}\right]$ such that $\operatorname{deg}\left(H_{i}\right) \leq \operatorname{deg}(F)-\operatorname{deg}\left(G_{i}\right)$ for each i and

$$
F=\sum_{i=1}^{k} G_{i} H_{i} .
$$

Further, if any such P-family of polynomials exists, we say F is P-Cartesian.

First Generalized Combinatorial Nullstellensatz

First Generalized Combinatorial Nullstellensatz

Theorem
Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a P-family of polynomials, all squarefree, and let $F \in K\left[x_{1}, \cdots, x_{n}\right]$. Suppose F vanishes on $\prod_{i=1}^{k} Z\left(G_{i}\right)$. Then F is \mathcal{G}-Cartesian (and hence also P-Cartesian).

First Generalized Combinatorial Nullstellensatz

Theorem
Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a P-family of polynomials, all squarefree, and let $F \in K\left[x_{1}, \cdots, x_{n}\right]$. Suppose F vanishes on $\prod_{i=1}^{k} Z\left(G_{i}\right)$. Then F is \mathcal{G}-Cartesian (and hence also P-Cartesian).

Outline of Proof:

First Generalized Combinatorial Nullstellensatz

Theorem

Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a P-family of polynomials, all squarefree, and let $F \in K\left[x_{1}, \cdots, x_{n}\right]$. Suppose F vanishes on $\prod_{i=1}^{k} Z\left(G_{i}\right)$. Then F is \mathcal{G}-Cartesian (and hence also P-Cartesian).

Outline of Proof:

- by multivariate division, $F=G_{1} H_{1}+\cdots+G_{k} H_{k}+R$

First Generalized Combinatorial Nullstellensatz

Theorem

Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a P-family of polynomials, all squarefree, and let $F \in K\left[x_{1}, \cdots, x_{n}\right]$. Suppose F vanishes on $\prod_{i=1}^{k} Z\left(G_{i}\right)$. Then F is \mathcal{G}-Cartesian (and hence also P-Cartesian).

Outline of Proof:

- by multivariate division, $F=G_{1} H_{1}+\cdots+G_{k} H_{k}+R$
- R is identically zero by induction on k

First Generalized Combinatorial Nullstellensatz

Theorem

Let $\mathcal{G}=\left\{G_{i}: i \in\{1, \cdots, k\}\right\}$ be a P-family of polynomials, all squarefree, and let $F \in K\left[x_{1}, \cdots, x_{n}\right]$. Suppose F vanishes on $\prod_{i=1}^{k} Z\left(G_{i}\right)$. Then F is \mathcal{G}-Cartesian (and hence also P-Cartesian).

Outline of Proof:

- by multivariate division, $F=G_{1} H_{1}+\cdots+G_{k} H_{k}+R$
- R is identically zero by induction on k
- hence, F is \mathcal{G}-Cartesian

Combinatorial Nullstellensatz (again)

Combinatorial Nullstellensatz (again)

Second Combinatorial Nullstellensatz (Alon 1999)
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and suppose that $\operatorname{deg}(f)=\sum_{i=1}^{n} t_{i}$ for nonnegative integers t_{i}. Suppose further that the coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ in F is nonzero. Then if $S_{1}, \cdots, S_{n} \in K$ with $\# S_{i}>t_{i}$ for each i, there is $s \in S_{1} \times \cdots \times S_{n}$ such that

$$
F(s) \neq 0 .
$$

Background: The Special Monomials

Background: The Special Monomials

- in original theorem, coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ must be nonzero

Background: The Special Monomials

- in original theorem, coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ must be nonzero

Definition

Let $a=\left(a_{1}, \cdots, a_{n}\right)$. We say the P-reduction of a is $\left(a_{1}+\cdots+a_{n_{1}}, \cdots, a_{n_{k}+1}+\cdots+a_{n}\right)$. We also define the P-support of a polynomial to be the set of P-reductions of the elements of the support.

Background: The Special Monomials

- in original theorem, coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ must be nonzero

Definition

Let $a=\left(a_{1}, \cdots, a_{n}\right)$. We say the P-reduction of a is $\left(a_{1}+\cdots+a_{n_{1}}, \cdots, a_{n_{k}+1}+\cdots+a_{n}\right)$. We also define the P-support of a polynomial to be the set of P-reductions of the elements of the support.

- the tuple $(1,2,1,0,5)$ has P-reduction $(3,6)$ for P defined by $0<2<5$

Background: The Special Monomials

- in original theorem, coefficient of $\prod_{i=1}^{n} x_{i}^{t_{i}}$ must be nonzero

Definition

Let $a=\left(a_{1}, \cdots, a_{n}\right)$. We say the P-reduction of a is $\left(a_{1}+\cdots+a_{n_{1}}, \cdots, a_{n_{k}+1}+\cdots+a_{n}\right)$. We also define the P-support of a polynomial to be the set of P-reductions of the elements of the support.

- the tuple $(1,2,1,0,5)$ has P-reduction $(3,6)$ for P defined by $0<2<5$
- the polynomial $x_{2} x_{3}^{4}+x_{1} x_{2} x_{3}^{7} x_{4}$ has P-support $\{(3,4,0),(2,7,1)\}$ for P defined by $0<2<3<4$

Background: Algebraic Degree

Background: Algebraic Degree

- in original theorem, required $\# S_{i}>t_{i}$

Background: Algebraic Degree

- in original theorem, required $\# S_{i}>t_{i}$
- no longer sufficient to bound cardinality

Background: Algebraic Degree

- in original theorem, required $\# S_{i}>t_{i}$
- no longer sufficient to bound cardinality

Definition

Let $S \in K^{n}$ be a finite set. Then the algebraic degree of S, denoted $d(S)$, is the degree of the lowest degree polynomial in $K\left[x_{1}, \cdots, x_{n}\right]$ which vanishes completely on S.

Background: Algebraic Degree

- in original theorem, required $\# S_{i}>t_{i}$
- no longer sufficient to bound cardinality

Definition

Let $S \in K^{n}$ be a finite set. Then the algebraic degree of S, denoted $d(S)$, is the degree of the lowest degree polynomial in $K\left[x_{1}, \cdots, x_{n}\right]$ which vanishes completely on S.

- in one dimension, $\# S=d(S)$

Second Generalized Combinatorial Nullstellensatz

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

- proof inspired by survey of Terence Tao

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

- proof inspired by survey of Terence Tao

Outline of Proof:

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

- proof inspired by survey of Terence Tao

Outline of Proof:

- find f_{i} so $\sum_{s_{i} \in s_{i}} f_{i}\left(s_{i}\right) s_{i}^{a}$ is 0 when a's terms sum to less than t_{i} and 1 when they sum to t_{i}

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

- proof inspired by survey of Terence Tao

Outline of Proof:

- find f_{i} so $\sum_{s_{i} \in s_{i}} f_{i}\left(s_{i}\right) s_{i}^{a}$ is 0 when a's terms sum to less than t_{i} and 1 when they sum to t_{i}
- consider when $\sum f_{1}\left(s_{1}\right) \cdots f_{k}\left(s_{k}\right) s_{1}^{a_{1}} \cdots s_{k}^{a_{k}}$ is 0 or 1

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

- proof inspired by survey of Terence Tao

Outline of Proof:

- find f_{i} so $\sum_{s_{i} \in s_{i}} f_{i}\left(s_{i}\right) s_{i}^{a}$ is 0 when a's terms sum to less than t_{i} and 1 when they sum to t_{i}
- consider when $\sum f_{1}\left(s_{1}\right) \cdots f_{k}\left(s_{k}\right) s_{1}^{a_{1}} \cdots s_{k}^{a_{k}}$ is 0 or 1
- conclude $\sum f_{1}\left(s_{1}\right) \cdots f_{k}\left(s_{k}\right) F\left(s_{1}, \cdots, s_{k}\right) \neq 0$

Second Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{n}\right]$, and let $t=\left(t_{1}, \cdots, t_{k}\right)$ be maximal in the P-support of F. For each $i \in\{1, \cdots, k\}$, let $S_{i} \subset K^{n_{i}-n_{i-1}}$ be finite with $d\left(S_{i}\right)>t_{i}$. Then there is $s \in S_{1} \times \cdots \times S_{k}$ such that $F(s) \neq 0$.

- proof inspired by survey of Terence Tao

Outline of Proof:

- find f_{i} so $\sum_{s_{i} \in s_{i}} f_{i}\left(s_{i}\right) s_{i}^{a}$ is 0 when a's terms sum to less than t_{i} and 1 when they sum to t_{i}
- consider when $\sum f_{1}\left(s_{1}\right) \cdots f_{k}\left(s_{k}\right) s_{1}^{a_{1}} \cdots s_{k}^{a_{k}}$ is 0 or 1
- conclude $\sum f_{1}\left(s_{1}\right) \cdots f_{k}\left(s_{k}\right) F\left(s_{1}, \cdots, s_{k}\right) \neq 0$
- conclude F does not vanish on all of $S_{1} \times \cdots \times S_{k}$

The $2 \times 2 \times \cdots \times 2$ Case

The $2 \times 2 \times \cdots \times 2$ Case

- we have a lemma from Mojarrad et al. and Raz et al.

The $2 \times 2 \times \cdots \times 2$ Case

- we have a lemma from Mojarrad et al. and Raz et al.

Lemma (Mojarrad et al. 2016)

Let \mathcal{S} be a possibly infinite set of curves in K^{2} of degree at most d, and suppose that their intersection $\cap_{\subset \in \mathcal{S}} \mathcal{C}$ contains a set I of size $\| \mid>d^{2}$. Then there is a curve C_{0} such that $C_{0} \in \cap_{C \in \mathcal{S}} C$ and $\left|C_{0} \cap \| \geq| |-(d-1)^{2}\right.$.

The $2 \times 2 \times \cdots \times 2$ Case

- we have a lemma from Mojarrad et al. and Raz et al.

Lemma (Mojarrad et al. 2016)

Let \mathcal{S} be a possibly infinite set of curves in K^{2} of degree at most d, and suppose that their intersection $\cap_{c \in \mathcal{S}} C$ contains a set I of size $\| \mid>d^{2}$. Then there is a curve C_{0} such that $C_{0} \in \cap_{C \in \mathcal{S}} C$ and $\left|C_{0} \cap\|\geq \mid\|-(d-1)^{2}\right.$.

- analogue of Bézout's Theorem for many curves

The $2 \times 2 \times \cdots \times 2$ Case

- we have a lemma from Mojarrad et al. and Raz et al.

Lemma (Mojarrad et al. 2016)

Let \mathcal{S} be a possibly infinite set of curves in K^{2} of degree at most d, and suppose that their intersection $\cap_{c \in \mathcal{S}} C$ contains a set I of size $\| \mid>d^{2}$. Then there is a curve C_{0} such that $C_{0} \in \cap_{C \in \mathcal{S}} C$ and $\left|C_{0} \cap \| \geq| |-(d-1)^{2}\right.$.

- analogue of Bézout's Theorem for many curves
- no direct analogue for three or more dimensions: consider many planes intersecting in a line

Another Generalized Combinatorial Nullstellensatz

Another Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{2 m}\right]$, and denote by $\operatorname{deg}_{m}(F)$ the degree of F as a polynomial in $x_{2 m-1}, x_{2 m}$. For each $i \in\{1, \cdots, m\}$, let $S_{i} \subset K^{2}$ and suppose $\# S_{i}>\operatorname{deg}_{i}(F)^{2}$. Then there is $s \in S_{1} \times \cdots \times S_{m}$ such that $f(s)=0$ unless F is P-Cartesian for P defined by $0<2<\cdots<2 m$.

Another Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{2 m}\right]$, and denote by $\operatorname{deg}_{m}(F)$ the degree of F as a polynomial in $x_{2 m-1}, x_{2 m}$. For each $i \in\{1, \cdots, m\}$, let $S_{i} \subset K^{2}$ and suppose $\# S_{i}>\operatorname{deg}_{i}(F)^{2}$. Then there is $s \in S_{1} \times \cdots \times S_{m}$ such that $f(s)=0$ unless F is P-Cartesian for P defined by $0<2<\cdots<2 m$.

Outline of Proof:

Another Generalized Combinatorial Nullstellensatz

Theorem
Let $F \in K\left[x_{1}, \cdots, x_{2 m}\right]$, and denote by $\operatorname{deg}_{m}(F)$ the degree of F as a polynomial in $x_{2 m-1}, x_{2 m}$. For each $i \in\{1, \cdots, m\}$, let $S_{i} \subset K^{2}$ and suppose $\# S_{i}>\operatorname{deg}_{i}(F)^{2}$. Then there is $s \in S_{1} \times \cdots \times S_{m}$ such that $f(s)=0$ unless F is P-Cartesian for P defined by $0<2<\cdots<2 m$.

Outline of Proof:

- use lemma to find that F vanishes on some $\Pi Z\left(G_{i}\right)$

Another Generalized Combinatorial Nullstellensatz

Theorem

Let $F \in K\left[x_{1}, \cdots, x_{2 m}\right]$, and denote by $\operatorname{deg}_{m}(F)$ the degree of F as a polynomial in $x_{2 m-1}, x_{2 m}$. For each $i \in\{1, \cdots, m\}$, let $S_{i} \subset K^{2}$ and suppose $\# S_{i}>\operatorname{deg}_{i}(F)^{2}$. Then there is $s \in S_{1} \times \cdots \times S_{m}$ such that $f(s)=0$ unless F is P-Cartesian for P defined by $0<2<\cdots<2 m$.

Outline of Proof:

- use lemma to find that F vanishes on some $\prod Z\left(G_{i}\right)$
- use first generalized Combinatorial Nullstellensatz to show that F is Cartesian

Higher Dimensions

Higher Dimensions

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points

Higher Dimensions

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout

Higher Dimensions

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout
- in three or more dimensions, infinite intersection no longer means intersection in a hyperplane

Higher Dimensions

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout
- in three or more dimensions, infinite intersection no longer means intersection in a hyperplane
- much harder to find shared curve in three or more dimensions

Higher Dimensions

- in one dimension, it is easy to find a polynomial that vanishes on exactly a specific set of points
- in two dimensions, we can find shared curve between curves with Bézout
- in three or more dimensions, infinite intersection no longer means intersection in a hyperplane
- much harder to find shared curve in three or more dimensions
- hence, difficult to show a polynomial is Cartesian from vanishing on a finite set

Future Work

Future Work

Further Goal

To generalize the Schwartz-Zippel lemma to higher dimensions, starting with the $2 \times 2 \times \cdots \times 2$ case, by giving a bound on the intersection of a variety in $\mathbb{C}^{2 k}$ with $S_{1} \times \cdots \times S_{k}$, with the S_{i} all 2-dimensional and finite.

Future Work

Further Goal

To generalize the Schwartz-Zippel lemma to higher dimensions, starting with the $2 \times 2 \times \cdots \times 2$ case, by giving a bound on the intersection of a variety in $\mathbb{C}^{2 k}$ with $S_{1} \times \cdots \times S_{k}$, with the S_{i} all 2-dimensional and finite.

- generalization would present improvements on Schwartz-Zippel in certain cases

Future Work

Further Goal

To generalize the Schwartz-Zippel lemma to higher dimensions, starting with the $2 \times 2 \times \cdots \times 2$ case, by giving a bound on the intersection of a variety in $\mathbb{C}^{2 k}$ with $S_{1} \times \cdots \times S_{k}$, with the S_{i} all 2-dimensional and finite.

- generalization would present improvements on Schwartz-Zippel in certain cases
- linked to generalized Combinatorial Nullstellensatz

Thank you!

Refrences I

目 N．Alon．
Combinatorial Nullstellensatz．
Comp．Prob．Comput．，8：7－29， 1999.
国
D．Cox，J．Little，and D．O＇Shea．
Ideals，Varieties，and Algorithms．
Springer Science＋Business Media，LLC，New York，USA， 2007.
围 M．Lasoń．
A generalization of Combinatorial Nullstellensatz．
Electronic Journal of Combinatorics，17：1－6， 2010.
围 H．Mojarrad，T．Pham，C．Valculescu，and F．de Zeeuw．
Schwartz－Zippel bounds for two－dimensional products， 2015.

Refrences II

堛 O. Raz, M. Sharir, and F. de Zeeuw.
Polynomials vanishing on Cartesian products: The Elekes-Szabó Theorem revisited.
In 31st Annual Symposium on Computational Geometry, pages 522-536, 2015.
T. Tao.

Algebraic combinatorial geometry: the polynomial method in arithmetic combinatorics, incidence combinatorics, and number theory, 2014.

Thank you!

