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The Schwartz-Zippel Lemma

Schwartz-Zippel Lemma
Let F ∈ K[x1, · · · , xn] be a nonzero polynomial of degree d and let
S ⊂ K be finite. Then

|Z(F) ∩ Sn| ≤ d|S|n−1.

Why is it useful?

• no restrictions on the polynomial
• powerful tool for polynomial identity testing

How tight is the bound?

• roughly, tightest for polynomials of form
∑

i
∏

j(xi − sj)
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Combinatorial Nullstellensatz

Combinatorial Nullstellensatz (Alon 1999)
Let F ∈ K[x1, · · · , xn], and let Si ⊂ K for i ∈ {1, · · · ,n}. Define
Gi(xi) =

∏
si∈Si(xi − si), and suppose F vanishes on

∏n
i=1 Z(Gi). Then

there are polynomials H1, · · · ,Hn ∈ K[x1, · · · , xn] with
deg(Hi) ≤ deg(Fi)− deg(Gi) such that

F =
n∑
i=1

GiHi.

• note: we will assume K is a field throughout the talk
• enormous applications in many areas
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Combinatorial Nullstellensatz

Second Combinatorial Nullstellensatz (Alon 1999)
Let F ∈ K[x1, · · · , xn], and suppose that deg(f) =

∑n
i=1 ti for

nonnegative integers ti. Suppose further that the coefficient of∏n
i=1 x

ti
i in F is nonzero. Then if S1, · · · , Sn ∈ K with #Si > ti for each

i, there is s ∈ S1 × · · · × Sn such that

F(s) ̸= 0.
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Two Applications

Cauchy-Davenport Theorem (Cauchy 1813)
If p is a prime, and A, B are two nonempty subsets of Zp, then

|A+ B| ≥ min{p, |A|+ |B|+ 1}.

Theorem (Chevalley 1935, special case)
Let p be a prime, and let P1, · · · ,Pm ∈ Zp[x1, · · · , xn]. If
n >

∑m
i=1 deg(Pi) and the polynomials Pi have a common zero, then

they have another common zero.

• both classical results follow easily from Combinatorial
Nullstellensatz
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Our Goal

Goal
To find generalizations of the Combinatorial Nullstellensatz into
higher dimensions, that is, to generalize the theorem so that the
sets Si can be in more than one dimension and the polynomials Gi
can be in more than one variable.

• may have applications analogous to original applications of
theorem

• 2× 2 case already considered by Mojarrad et al.
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Background: The Partition

• in original theorem, n is partitioned into 0 < 1 < · · · < n
• from now on, assume that P is the partition of n given by

0 = n0 < n1 < n2 < · · · < nk = n

• now we can have Gi higher-dimensional

Definition
Let G = {Gi : i ∈ {1, · · · , k}} be a set of polynomials. We say G is a
P-family of polynomials if Gi ∈ K[xni−1+1, · · · , xni ] for each i.
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Background: The Form of the Polynomial

• original theorem had special form F = G1H1 + · · ·+ GnHn

Definition (Cartesian Polynomial)
Let G = {Gi : i ∈ {1, · · · , k}} be a P-family of polynomials, and let
F ∈ K[x1, · · · , xn]. We say F is G-Cartesian if there are polynomials
H1, · · · ,Hk ∈ K[x1, · · · , xn] such that deg(Hi) ≤ deg(F)− deg(Gi) for
each i and

F =
k∑
i=1

GiHi.

Further, if any such P-family of polynomials exists, we say F is
P-Cartesian.
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First Generalized Combinatorial Nullstellensatz

Theorem
Let G = {Gi : i ∈ {1, · · · , k}} be a P-family of polynomials, all
squarefree, and let F ∈ K[x1, · · · , xn]. Suppose F vanishes on∏k

i=1 Z(Gi). Then F is G-Cartesian (and hence also P-Cartesian).

Outline of Proof:

• by multivariate division, F = G1H1 + · · ·+ GkHk + R
• R is identically zero by induction on k
• hence, F is G-Cartesian
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Combinatorial Nullstellensatz (again)

Second Combinatorial Nullstellensatz (Alon 1999)
Let F ∈ K[x1, · · · , xn], and suppose that deg(f) =

∑n
i=1 ti for

nonnegative integers ti. Suppose further that the coefficient of∏n
i=1 x

ti
i in F is nonzero. Then if S1, · · · , Sn ∈ K with #Si > ti for each

i, there is s ∈ S1 × · · · × Sn such that

F(s) ̸= 0.
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Background: The Special Monomials

• in original theorem, coefficient of
∏n

i=1 x
ti
i must be nonzero

Definition
Let a = (a1, · · · ,an). We say the P-reduction of a is
(a1 + · · ·+ an1 , · · · ,ank+1 + · · ·+ an). We also define the P-support
of a polynomial to be the set of P-reductions of the elements of
the support.

• the tuple (1,2,1,0,5) has P-reduction (3, 6) for P defined by
0 < 2 < 5

• the polynomial x2x43 + x1x2x73x4 has P-support {(3, 4, 0), (2, 7, 1)}
for P defined by 0 < 2 < 3 < 4
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Background: Algebraic Degree

• in original theorem, required #Si > ti
• no longer sufficient to bound cardinality

Definition
Let S ∈ Kn be a finite set. Then the algebraic degree of S, denoted
d(S), is the degree of the lowest degree polynomial in K[x1, · · · , xn]
which vanishes completely on S.

• in one dimension, #S = d(S)
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Second Generalized Combinatorial Nullstellensatz

Theorem
Let F ∈ K[x1, · · · , xn], and let t = (t1, · · · , tk) be maximal in the
P-support of F. For each i ∈ {1, · · · , k}, let Si ⊂ Kni−ni−1 be finite with
d(Si) > ti. Then there is s ∈ S1 × · · · × Sk such that F(s) ̸= 0.

• proof inspired by survey of Terence Tao

Outline of Proof:

• find fi so
∑

si∈Si fi(si)s
a
i is 0 when a’s terms sum to less than ti

and 1 when they sum to ti
• consider when

∑
f1(s1) · · · fk(sk)sa11 · · · sakk is 0 or 1

• conclude
∑
f1(s1) · · · fk(sk)F(s1, · · · , sk) ̸= 0

• conclude F does not vanish on all of S1 × · · · × Sk
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The 2× 2× · · · × 2 Case

• we have a lemma from Mojarrad et al. and Raz et al.

Lemma (Mojarrad et al. 2016)
Let S be a possibly infinite set of curves in K2 of degree at most d,
and suppose that their intersection ∩C∈SC contains a set I of size
|I| > d2. Then there is a curve C0 such that C0 ∈ ∩C∈SC and
|C0 ∩ I| ≥ |I| − (d− 1)2.

• analogue of Bézout’s Theorem for many curves
• no direct analogue for three or more dimensions: consider
many planes intersecting in a line
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Another Generalized Combinatorial Nullstellensatz

Theorem
Let F ∈ K[x1, · · · , x2m], and denote by degm(F) the degree of F as a
polynomial in x2m−1, x2m. For each i ∈ {1, · · · ,m}, let Si ⊂ K2 and
suppose #Si > degi(F)2. Then there is s ∈ S1 × · · · × Sm such that
f(s) = 0 unless F is P-Cartesian for P defined by 0 < 2 < · · · < 2m.

Outline of Proof:

• use lemma to find that F vanishes on some
∏
Z(Gi)

• use first generalized Combinatorial Nullstellensatz to show that
F is Cartesian
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Higher Dimensions

• in one dimension, it is easy to find a polynomial that vanishes
on exactly a specific set of points

• in two dimensions, we can find shared curve between curves
with Bézout

• in three or more dimensions, infinite intersection no longer
means intersection in a hyperplane

• much harder to find shared curve in three or more dimensions
• hence, difficult to show a polynomial is Cartesian from
vanishing on a finite set
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Future Work

Further Goal
To generalize the Schwartz-Zippel lemma to higher dimensions,
starting with the 2× 2× · · · × 2 case, by giving a bound on the
intersection of a variety in C2k with S1 × · · · × Sk, with the Si all
2-dimensional and finite.

• generalization would present improvements on Schwartz-Zippel
in certain cases

• linked to generalized Combinatorial Nullstellensatz
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