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Chemical Reaction Networks

A CRN is described by three sets:

I species, S
I complexes, C ⊆ RS≥0 (or ZS≥0)

I reactions, R ⊆ C × C
From these, we get a system of (first order)

differential equations
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CRN Example

E + S
k1−−⇀↽−−
k–1

E · S k2−−→ E + P

S = {E , S , P , E · S}
C = {E + S , E · S , E + P}
R = {(c1, c2), (c2, c1), (c2, c3)}
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CRN Example

E + S
k1−−⇀↽−−
k–1

E · S k2−−→ E + P

d [E ]

dt
= −k1[E ][S ] + k−1[E · S ] + k2[E · S ]

d [S ]

dt
= −k1[E ][S ] + k−1[E · S ]

d [E · S ]
dt

= k1[E ][S ]− k−1[E · S ]− k2[E · S ]

d [P]

dt
= k2[E · S ]
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QSSA Method

I Reduce to a model with fewer ODEs

I Quasi-steady-state-assumption (QSSA)

simplifies the system by assuming some

components do not accumulate

I Eliminates some intermediates by replacing

ODEs with algebraic constraints
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QSSA Example

E + S
k1−−⇀↽−−
k–1

E · S k2−−→ E + P

d [E ]

dt
= −k1[E ][S ] + k−1[E · S ] + k2[E · S ]

d [S ]

dt
= −k1[E ][S ] + k−1[E · S ]

d [E · S ]
dt

= k1[E ][S ]− k−1[E · S ]− k2[E · S ] = 0

d [P]

dt
= k2[E · S ]
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QSSA Example

0 = k1[E ][S ]− k−1[E · S ]− k2[E · S ]

(k−1 + k2)[E · S ] = k1[E ][S ]

[E · S ] =
k1[E ][S ]

k−1 + k2
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Galois Theory

I If L/k is a normal, separable extension of

fields, the automorphisms of L over k form

a group G (the Galois group)
I G is solvable if (and only if) each α ∈ L

can be expressed in terms of elements of k ,

roots of unity, radicals, and +,−,×,÷
I Rules out a “quadratic formula” for

polynomials with degree 5 or higher
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Galois Theory Examples

solvable:

x2 − 2 ←→ Z/2Z
x4 − 5 ←→ D8

insolvable:

x5 − 3x2 + 1 ←→ S5

(k = Q)
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QSSA & Galois Theory

I Work over k = Q(ki , cj , ...); adjoin all

relevant constants

QSSA⇔ systems of polynomials

⇔ ideals in k[x1, ..., xn]

I Examples exist which reduce to insoluble

univariate polynomials (over k)
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Main Questions

Under what circumstances will QSSA work?

When will it fail?

1. classes of networks

2. structural properties

3. small counterexamples

4. subnetworks/extensions
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What does “possible” mean?

Many different ways of framing QSSA:

I Finitely many solutions

I Solutions expressible in radicals

u Nondegenerate solutions

u Real solutions

u Positive solutions
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Algebra Preliminaries

Fix ideals I , J ⊆ k[x1, ..., xn]

I the variety, V (I ) = {zeros of I in kn}
I similarly, V a(I ) = {zeros of I in (ka)n}
I a Gröbner basis of I : generalization of

Gaussian Elimination

I the ideal quotient, I : J , which

generalizes division
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Reduction to Univariate Case

Lemma

Let I be an ideal in k[x1, ..., xn]. Then V a(I )

is finite if and only if each intersection

I ∩ k[xi ] is nonzero.

Almost always the case when using QSSA
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Computing Intersections

Lemma

Let I be an ideal in k[x1, ..., xn] with Gröbner

basis G w.r.t.

x1 > x2 > ... > xn

Then G ∩ k[xn] generates I ∩ k[xn].

For reduced GBs, there is a unique generator
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Checking Solvability

I Together, these suggest an algorithm:
1. Find the generators of I ∩ k[xi ]
2. Compute their Galois groups
3. Check for solvability

I If all the generators are solvable, V (I ) has

solvable entries in every coordinate
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A Simple Case

Lemma

Fix I ⊆ k[x , y ], k algebraically closed. If

there exist f1, f2 ∈ I such that f1 is

irreducible and f2 6∈ 〈f1〉, then V (I ) is finite.

Lemma

Let I = 〈f1, ..., fn〉 and deg(fi) = di . If V (I )

is finite, then deg(g) ≤ d1d2...dn, where

I ∩ k[xi ] = 〈g〉.
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A Simple Case

I S4 is solvable

I if deg(f ) = n, Gal(f/k) embeds in Sn

Proposition (S.)

If a CRN has at-most-bimolecular kinetics

and we choose two “chemically reasonable”

intermediates, QSSA is always possible.
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Example

A
k1−−→ 2X

k2−−⇀↽−−
k–2

2Y

X + Y
k3−−→ B

dx

dt
= 0 = −2k2x2 − k3xy + 2k−2y + ak1

dy

dt
= 0 = −2k−2y 2 − k3xy + k2x2
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Example

After computing a Gröbner basis, we get

f (x) =(8k−2k
2
2 − 3k2k

2
3 )x

4 + (8k−2k2k3)x
3

+ (−8ak−2k1k2 + ak1k
2
3 − 4k2

−2k2)x
2

− (2k−2k1ak3)x + (2a2k−2k
2
1 )

I Gal(f /k) is isomorphic to D8

I For y , we obtain D8 as well
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Extending Solvability

I The proposition describes some common

systems, but is limited
I In some circumstances solvability can be

extended:
1. “treelike” mechanisms
2. nondegenerate and/or physically achievable
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Oriented Species-Reaction Graph
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QSSA OSR Graph
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Extending Solvability

Theorem (S.)

Given a QOSR graph H and intermediates

Q, QSSA is possible when there exists an

equivalence relation ∼ on H such that H/∼
has no directed cycles and QSSA is possible

on each equivalence class in Q/∼ under

particular kinds of substitution
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Extending Solvability

Corollary (S.)

If we use Proposition 1 to prove solvability for

the previous theorem, QSSA is possible for

the nondegenerate achievable steady states.
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Pantea et al.: “Counterexample”

2 Y
k1−−⇀↽−−
k–1

2 B

Y + B
k2−−→ Z + A

Z + B
k3−−⇀↽−−
k–3

2 X

A + X
k4−−→ Y + B

2 Z
k5−−⇀↽−−
k–5

2 A

X

Y

Z

-1 1

2

3

-3

4

5

-5
2

2

2

2

2

2
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Remove reaction −5 as well
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Modified Pantea Mechanism

Q1 = {X ,Z}

Q2 = {Y }
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Modified Pantea Mechanism

Q1 = {X ,Z} and Q2 = {Y }

Φx = −2k−3x2 − k4ax + 2k3bz

Φy = −2k1y 2 − k2by + 2k−1b2 + k4ax

Φz = −2k5z2 − k3bz + k−3x2

x ←→ S3 or {e}
y ←→ S4 × Z2 or Z2

z ←→ S3 or {e} 29/37



Modified Pantea Mechanism

I Multiple Galois groups arise when a

polynomial is reducible

I In this case, {e} and Z2 correspond to

degenerate solutions (x = 0 or z = 0)

I These are irrelevant for actual chemistry, so

we would like to remove them
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Modified Pantea Mechanism

I If we want to remove the zeros of an ideal

J from another ideal I , we take their

saturation:

I : J∞ =
∞⋃

m=1

I : Jm

I Similar to performing division
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Modified Pantea Mechanism

I To encode nondegeneracy we want to cut

out

x = 0 or y = 0 or z = 0

I Which is summarized by J = 〈xyz〉
I The ideal we want:

I ′Q = IQ : J∞
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Modified Pantea Mechanism

I After performing the same steps to find the

Galois groups:

x ←→ S3

y ←→ S4 × Z2

z ←→ S3
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Saturation

I Saturation is not immediately useful: it is

easy to ignore a few solutions, but...

Conjecture

Corollary 1 only requires nondegeneracy (i.e.

imaginary or negative concentrations are

permissible)
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Saturation

I Saturation removes the (infinitely many)

degenerate solutions ahead of time

I This may (not) simplify computations

I Almost all “counterexamples” in CRNs lie

at boundaries, so saturation may help

generalize some of these results
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Future Directions

I More (general) finiteness criteria

I More solvability criteria

I CRN structure ⇔ Galois group

I Weakening QSSA to nondegenerate and/or

achievable concentrations
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