QSSA and Solvability

Mark Sweeney
University of Rochester

$$
\text { July 18, } 2017
$$

Chemical Reaction Networks

A CRN is described by three sets:

- species, \mathcal{S}
- complexes, $\mathcal{C} \subseteq \mathbb{R}_{\geq 0}^{\mathcal{S}}\left(\right.$ or $\left.\mathbb{Z}_{\geq 0}^{\mathcal{S}}\right)$
- reactions, $\mathcal{R} \subseteq \mathcal{C} \times \mathcal{C}$

From these, we get a system of (first order) differential equations

CRN Example

$$
\begin{aligned}
\mathrm{E} & +\mathrm{S} \xlongequal[\mathrm{k}-1]{\mathrm{k}_{1}} \mathrm{E} \cdot \mathrm{~S} \xrightarrow{\mathrm{k}_{2}} \mathrm{E}+\mathrm{P} \\
\mathcal{S} & =\{E, S, P, E \cdot S\} \\
\mathcal{C} & =\{E+S, E \cdot S, E+P\} \\
\mathcal{R} & =\left\{\left(c_{1}, c_{2}\right),\left(c_{2}, c_{1}\right),\left(c_{2}, c_{3}\right)\right\}
\end{aligned}
$$

CRN Example

$$
\begin{aligned}
\mathrm{E} & +\mathrm{S} \stackrel{\mathrm{k}_{\mathrm{k}}}{\mathrm{k}_{-1}} \mathrm{E} \cdot \mathrm{~S} \stackrel{\mathrm{k}_{2}}{\longrightarrow} \mathrm{E}+\mathrm{P} \\
\frac{d[E]}{d t} & =-k_{1}[E][S]+k_{-1}[E \cdot S]+k_{2}[E \cdot S] \\
\frac{d[S]}{d t} & =-k_{1}[E][S]+k_{-1}[E \cdot S] \\
\frac{d[E \cdot S]}{d t} & =k_{1}[E][S]-k_{-1}[E \cdot S]-k_{2}[E \cdot S] \\
\frac{d[P]}{d t} & =k_{2}[E \cdot S]
\end{aligned}
$$

QSSA Method

- Reduce to a model with fewer ODEs
- Quasi-steady-state-assumption (QSSA) simplifies the system by assuming some components do not accumulate
- Eliminates some intermediates by replacing ODEs with algebraic constraints

QSSA Example

$$
\begin{aligned}
& \mathrm{E}+\mathrm{S} \stackrel{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{E} \cdot \mathrm{~S} \xrightarrow{\mathrm{k}_{2}} \mathrm{E}+\mathrm{P} \\
\frac{d[E]}{d t} & =-k_{1}[E][S]+k_{-1}[E \cdot S]+k_{2}[E \cdot S] \\
\frac{d[S]}{d t} & =-k_{1}[E][S]+k_{-1}[E \cdot S] \\
\frac{d[E \cdot S]}{d t} & =k_{1}[E][S]-k_{-1}[E \cdot S]-k_{2}[E \cdot S]=0 \\
\frac{d[P]}{d t} & =k_{2}[E \cdot S]
\end{aligned}
$$

QSSA Example

$$
\begin{gathered}
0=k_{1}[E][S]-k_{-1}[E \cdot S]-k_{2}[E \cdot S] \\
\left(k_{-1}+k_{2}\right)[E \cdot S]=k_{1}[E][S] \\
{[E \cdot S]=\frac{k_{1}[E][S]}{k_{-1}+k_{2}}}
\end{gathered}
$$

Galois Theory

- If L / k is a normal, separable extension of fields, the automorphisms of L over k form a group G (the Galois group)
- G is solvable if (and only if) each $\alpha \in L$ can be expressed in terms of elements of k, roots of unity, radicals, and,,$+- \times, \div$
- Rules out a "quadratic formula" for polynomials with degree 5 or higher

Galois Theory Examples

solvable:

$$
\begin{aligned}
& x^{2}-2 \longleftrightarrow \mathbb{Z} / 2 \mathbb{Z} \\
& x^{4}-5 \longleftrightarrow D_{8}
\end{aligned}
$$

insolvable:

$$
x^{5}-3 x^{2}+1 \longleftrightarrow S_{5}
$$

$$
(k=\mathbb{Q})
$$

QSSA \& Galois Theory

- Work over $\mathbb{k}=\mathbb{Q}\left(k_{i}, c_{j}, \ldots\right)$; adjoin all relevant constants

QSSA \Leftrightarrow systems of polynomials \Leftrightarrow ideals in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$

- Examples exist which reduce to insoluble univariate polynomials (over \mathbb{k})

Main Questions

Under what circumstances will QSSA work?
When will it fail?

1. classes of networks
2. structural properties
3. small counterexamples
4. subnetworks/extensions

What does "possible" mean?

Many different ways of framing QSSA:

- Finitely many solutions
- Solutions expressible in radicals

What does "possible" mean?

Many different ways of framing QSSA:

- Finitely many solutions
- Solutions expressible in radicals
- Nondegenerate solutions
- Real solutions
- Positive solutions

Algebra Preliminaries

Fix ideals $I, J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$

- the variety, $V(I)=\left\{\right.$ zeros of I in $\left.k^{n}\right\}$
- similarly, $V^{a}(I)=\left\{\right.$ zeros of I in $\left.\left(k^{a}\right)^{n}\right\}$
- a Gröbner basis of I : generalization of Gaussian Elimination
- the ideal quotient, I: J, which generalizes division

Reduction to Univariate Case

Lemma

Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. Then $V^{a}(I)$ is finite if and only if each intersection $I \cap k\left[x_{i}\right]$ is nonzero.

Almost always the case when using QSSA

Computing Intersections

Lemma

Let I be an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ with Gröbner basis G w.r.t.

$$
x_{1}>x_{2}>\ldots>x_{n}
$$

Then $G \cap k\left[x_{n}\right]$ generates $I \cap k\left[x_{n}\right]$.
For reduced GBs, there is a unique generator

Checking Solvability

- Together, these suggest an algorithm:

1. Find the generators of $I \cap k\left[x_{i}\right]$
2. Compute their Galois groups
3. Check for solvability

- If all the generators are solvable, $V(I)$ has solvable entries in every coordinate

A Simple Case

Lemma

Fix $I \subseteq k[x, y], k$ algebraically closed. If there exist $f_{1}, f_{2} \in I$ such that f_{1} is irreducible and $f_{2} \notin\left\langle f_{1}\right\rangle$, then $V(I)$ is finite.

Lemma

Let $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ and $\operatorname{deg}\left(f_{i}\right)=d_{i}$. If $V(I)$ is finite, then $\operatorname{deg}(g) \leq d_{1} d_{2} \ldots d_{n}$, where $I \cap k\left[x_{i}\right]=\langle g\rangle$.

A Simple Case

- S_{4} is solvable
- if $\operatorname{deg}(f)=n, \operatorname{Gal}(\mathrm{f} / \mathrm{k})$ embeds in S_{n}

Proposition (S.)

If a CRN has at-most-bimolecular kinetics and we choose two "chemically reasonable" intermediates, QSSA is always possible.

Example

$$
\begin{gathered}
A \xrightarrow{k_{1}} 2 X \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftharpoons}} 2 Y \\
X+Y \xrightarrow{k_{3}} B
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=0=-2 k_{2} x^{2}-k_{3} x y+2 k_{-2} y+a k_{1} \\
& \frac{d y}{d t}=0=-2 k_{-2} y^{2}-k_{3} x y+k_{2} x^{2}
\end{aligned}
$$

Example

After computing a Gröbner basis, we get

$$
\begin{aligned}
f(x)= & \left(8 k_{-2} k_{2}^{2}-3 k_{2} k_{3}^{2}\right) x^{4}+\left(8 k_{-2} k_{2} k_{3}\right) x^{3} \\
& +\left(-8 a k_{-2} k_{1} k_{2}+a k_{1} k_{3}^{2}-4 k_{-2}^{2} k_{2}\right) x^{2} \\
& -\left(2 k_{-2} k_{1} a k_{3}\right) x+\left(2 a^{2} k_{-2} k_{1}^{2}\right)
\end{aligned}
$$

- $\operatorname{Gal}(f / \mathbb{k})$ is isomorphic to D_{8}
- For y, we obtain D_{8} as well

Extending Solvability

- The proposition describes some common systems, but is limited
- In some circumstances solvability can be extended:

1. "treelike" mechanisms
2. nondegenerate and/or physically achievable

Oriented Species-Reaction Graph

QSSA OSR Graph

Extending Solvability

Theorem (S.)

Given a QOSR graph H and intermediates
\mathcal{Q}, QSSA is possible when there exists an equivalence relation \sim on H such that H / \sim has no directed cycles and QSSA is possible on each equivalence class in \mathcal{Q} / \sim under particular kinds of substitution

Extending Solvability

Corollary (S.)

If we use Proposition 1 to prove solvability for the previous theorem, QSSA is possible for the nondegenerate achievable steady states.

Pantea et al.: "Counterexample"

$$
\begin{gathered}
2 Y \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} 2 B \\
Y+B \xrightarrow[k_{2}]{\stackrel{k_{2}}{\rightleftharpoons}} Z+A \\
Z+B \underset{k_{-3}}{\stackrel{k_{3}}{\rightleftharpoons}} 2 X \\
A+X \underset{k_{-5}}{k_{4}} Y+B \\
2 Z \underset{k_{5}}{\rightleftharpoons}
\end{gathered} d A
$$

Pantea et al.: "Counterexample"

$$
\begin{aligned}
& 2 Y \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} 2 B \\
& Y+B \xrightarrow{k_{2}} Z+A \\
& Z+B \underset{k_{-3}}{\stackrel{k_{3}}{\rightleftharpoons}} 2 X \\
& A+X \xrightarrow{\mathrm{k}_{4}} Y+B \\
& 2 \mathrm{Z} \underset{\mathrm{k}_{-5}}{\stackrel{\mathrm{k}_{5}}{\rightleftharpoons}} 2 \mathrm{~A}
\end{aligned}
$$

Remove reaction -5 as well

Modified Pantea Mechanism

Modified Pantea Mechanism

Modified Pantea Mechanism

Modified Pantea Mechanism

$$
\mathcal{Q}_{1}=\{X, Z\} \text { and } \mathcal{Q}_{2}=\{Y\}
$$

$$
\begin{aligned}
& \Phi_{x}=-2 k_{-3} x^{2}-k_{4} a x+2 k_{3} b z \\
& \Phi_{y}=-2 k_{1} y^{2}-k_{2} b y+2 k_{-1} b^{2}+k_{4} a x \\
& \Phi_{z}=-2 k_{5} z^{2}-k_{3} b z+k_{-3} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x \longleftrightarrow S_{3} \text { or }\{e\} \\
& y \longleftrightarrow S_{4} \times \mathbb{Z}_{2} \text { or } \mathbb{Z}_{2} \\
& z \longleftrightarrow S_{3} \text { or }\{e\}
\end{aligned}
$$

Modified Pantea Mechanism

- Multiple Galois groups arise when a polynomial is reducible
- In this case, $\{e\}$ and \mathbb{Z}_{2} correspond to degenerate solutions ($x=0$ or $z=0$)
- These are irrelevant for actual chemistry, so we would like to remove them

Modified Pantea Mechanism

- If we want to remove the zeros of an ideal
J from another ideal I, we take their saturation:

$$
I: J^{\infty}=\bigcup_{m=1}^{\infty} I: J^{m}
$$

- Similar to performing division

Modified Pantea Mechanism

- To encode nondegeneracy we want to cut out

$$
x=0 \text { or } y=0 \text { or } z=0
$$

- Which is summarized by $J=\langle x y z\rangle$
- The ideal we want:

$$
I_{\mathcal{Q}}^{\prime}=I_{\mathcal{Q}}: J^{\infty}
$$

Modified Pantea Mechanism

- After performing the same steps to find the Galois groups:

$$
\begin{aligned}
& x \longleftrightarrow S_{3} \\
& y \longleftrightarrow S_{4} \times \mathbb{Z}_{2} \\
& z \longleftrightarrow S_{3}
\end{aligned}
$$

Saturation

- Saturation is not immediately useful: it is easy to ignore a few solutions, but...

Conjecture

Corollary 1 only requires nondegeneracy (i.e. imaginary or negative concentrations are permissible)

Saturation

- Saturation removes the (infinitely many) degenerate solutions ahead of time
- This may (not) simplify computations
- Almost all "counterexamples" in CRNs lie at boundaries, so saturation may help generalize some of these results

Future Directions

- More (general) finiteness criteria
- More solvability criteria
- CRN structure \Leftrightarrow Galois group
- Weakening QSSA to nondegenerate and/or achievable concentrations

Acknowledgements

Many thanks to:

- Dr. Anne Shiu, Ola Sobieska,

Nida Obatake, Jonathan Tyler

- Texas A\&M University
- The National Science Foundation

