# Convex Codes and Minimal Embedding Dimensions 

Megan Franke<br>UC Santa Barbara<br>July 17, 2017

## Neural Codes

- 2014 Nobel Prize in Physiology or Medicine: Place Cells


## Neural Codes

- 2014 Nobel Prize in Physiology or Medicine: Place Cells
- Each place cell corresponds to a receptive field


## Neural Codes

- 2014 Nobel Prize in Physiology or Medicine: Place Cells
- Each place cell corresponds to a receptive field
- The receptive fields from a set of neurons give us a neural code


Figure: Place Cells

## Neural Code Example

Convex Code: $\{\emptyset, 1,2,12\}$


## Convex Neural Codes

## Definition

We say that a code $\mathcal{C}$ is a convex code on $n$ neurons if there exists a collection of sets $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ such that for each $i \in[n], U_{i}$ is a convex subset of $\mathbb{R}^{d}$ and $\mathcal{C}(\mathcal{U})=\mathcal{C}$. A code $\mathcal{C}=\mathcal{C}(\mathcal{U})$ is open convex or closed convex if the $U_{i} \in \mathcal{U}$ are all open or all closed.

## When are codes just convex?

## Goal

Classify which codes are convex open, convex closed, just convex, or not convex at all.

## When are codes just convex?

## Goal

Classify which codes are convex open, convex closed, just convex, or not convex at all.

## Theorem (F., Muthiah)

Every neural code is just convex.

## Definitions

## Definition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be subsets of $\mathbb{R}^{d}$. Define the convex hull of $X_{1}, X_{2}, \ldots, X_{n}$ to be the smallest convex set in $\mathbb{R}^{d}$ containing $X_{1}, X_{2}, \ldots, X_{n}$, denoted by $\operatorname{conv}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

## Definitions

## Definition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be subsets of $\mathbb{R}^{d}$. Define the convex hull of $X_{1}, X_{2}, \ldots, X_{n}$ to be the smallest convex set in $\mathbb{R}^{d}$ containing $X_{1}, X_{2}, \ldots, X_{n}$, denoted by $\operatorname{conv}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Let $X_{1}=(0,0,0), X_{2}=(1,0,0), X_{3}=(0,1,0)$, and $X_{4}=(0,0,1)$.

## Definitions

## Definition

Let $X_{1}, X_{2}, \ldots, X_{n}$ be subsets of $\mathbb{R}^{d}$. Define the convex hull of $X_{1}, X_{2}, \ldots, X_{n}$ to be the smallest convex set in $\mathbb{R}^{d}$ containing $X_{1}, X_{2}, \ldots, X_{n}$, denoted by $\operatorname{conv}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Let $X_{1}=(0,0,0), X_{2}=(1,0,0), X_{3}=(0,1,0)$, and $X_{4}=(0,0,1)$. Then the convex hull of $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ is


## Just Convex Construction

Let $\mathcal{C}$ be a code on $n$ neurons where $\mathcal{C} \backslash\{\emptyset\}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ and let $\left\{e_{1}, \ldots, e_{k-1}\right\}$ be the standard basis for $\mathbb{R}^{k-1}$.

## Just Convex Construction

Let $\mathcal{C}$ be a code on $n$ neurons where $\mathcal{C} \backslash\{\emptyset\}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ and let $\left\{e_{1}, \ldots, e_{k-1}\right\}$ be the standard basis for $\mathbb{R}^{k-1}$.

Take $\sigma_{1}$. Then for every $j \in[n]$, if $j \in \sigma_{1}$ define $V_{j}^{1}$ to be the closed point at the origin.

$$
V_{j}^{1} \bullet
$$

Otherwise, define $V_{j}^{1}=\emptyset$.

## Just Convex Construction

Take $\sigma_{2}$. Then for every $j \in[n]$, if $j \in \sigma_{2}$ define $V_{j}^{2}$ to be $\operatorname{conv}\left\{0, e_{1}\right\}-\{0\}$.


Otherwise, define $V_{j}^{2}=\emptyset$.

## Just Convex Construction

Next take $\sigma_{3}$. Then for every $j \in[n]$, if $j \in \sigma_{3}$ define $V_{j}^{3}$ to be $\operatorname{conv}\left\{0, e_{1}, e_{2}\right\}$, but open along its intersection with $\operatorname{conv}\left\{0, e_{1}\right\}$.


Otherwise, define $V_{j}^{3}=\emptyset$.

## Just Convex Construction

Continuing in this way, for all $j \in[n]$, if $j \in \sigma_{m}$, define $V_{j}^{m}$ to be $\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{m-1}\right\}$, but open along its intersection with $\operatorname{conv}\left\{0, e_{1}, e_{2}, \ldots, e_{m-2}\right\}$. Otherwise, define $V_{j}^{m}=\emptyset$.

## Just Convex Construction

When this has been completed for all $\sigma_{j} \in \mathcal{C}$, define

$$
U_{j}=\bigcup_{i \in[k]} V_{j}^{i}=V_{j}^{1} \cup V_{j}^{2} \cup \ldots \cup V_{j}^{k}
$$

for all $j \in[n]$.

## Example

Let $\mathcal{C}=\{\emptyset, 12,13,23\}$.

## Example

Let $\mathcal{C}=\{\emptyset, 12,13,23\}$. Then $\sigma_{1}=12, \sigma_{2}=13, \sigma_{3}=23$.

## Example

Let $\mathcal{C}=\{\emptyset, 12,13,23\}$. Then $\sigma_{1}=12, \sigma_{2}=13, \sigma_{3}=23$.

V neuron codeword\#

## Example

Let $\mathcal{C}=\{\emptyset, 12,13,23\}$. Then $\sigma_{1}=12, \sigma_{2}=13, \sigma_{3}=23$.

## Vneuron

$V_{1}^{1}$
$V_{2}^{1}$

$$
V_{3}^{1}=\emptyset
$$

## Example

Let $\mathcal{C}=\{\emptyset, 12,13,23\}$. Then $\sigma_{1}=12, \sigma_{2}=13, \sigma_{3}=23$.

## V neuron



$V_{1}^{2}$
$V_{2}^{2}=\emptyset$

$$
V_{3}^{1}=\emptyset
$$



## Example

Let $\mathcal{C}=\{\emptyset, 12,13,23\}$. Then $\sigma_{1}=12, \sigma_{2}=13, \sigma_{3}=23$.

## $V_{\text {neuron }}^{\text {codeword }}$



$$
V_{2}^{2}=\emptyset
$$

$$
V_{3}^{1}=\emptyset
$$



$$
V_{1}^{3}=\emptyset
$$


$V_{2}^{3}$

$V_{3}^{3}$

## Example

$$
\mathcal{C}=\{\emptyset, 12,13,23\}
$$



## Minimal Embedding Dimension

$\{\emptyset, 1,2,3,4,5,12,15,23,24,25,34,45,56,125,234,245\}$

## Minimal Embedding Dimension

$\{\emptyset, 1,2,3,4,5,12,15,23,24,25,34,45,56,125,234,245\}$


## Minimal Embedding Dimension

## Definition

Let $\mathcal{C}$ be a convex code on $n$ neurons. Suppose $\mathcal{C}$ is realized by $\mathcal{U}=\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$ where each $U_{i} \subset \mathbb{R}^{d}$ is convex.

- The minimal such $d$ is the minimal embedding dimension of $\mathcal{C}$.
- If we require all $U_{i} \in \mathcal{U}$ to be open, the minimal such $d$ is the minimal open embedding dimension of $\mathcal{C}$.
- If we require all $U_{i} \in \mathcal{U}$ to be closed, the minimal such $d$ is the minimal closed embedding dimension of $\mathcal{C}$.


## Minimal Embedding Dimension

## Definition

Define $\mathcal{C}_{n}$ to be the code on $n$ neurons containing all codewords of length $n-1$,

$$
\mathcal{C}_{n}=\{\sigma|\sigma \subseteq[n],|\sigma|=n-1\}
$$

Note that $\left|\mathcal{C}_{n}\right|=\binom{n}{n-1}=n$.

## Minimal Embedding Dimension

## Definition

Define $\mathcal{C}_{n}$ to be the code on $n$ neurons containing all codewords of length $n-1$,

$$
\mathcal{C}_{n}=\{\sigma|\sigma \subseteq[n],|\sigma|=n-1\}
$$

Note that $\left|\mathcal{C}_{n}\right|=\binom{n}{n-1}=n$.

## Theorem (F., Muthiah)

For every $n, \mathcal{C}_{n}$ has minimal embedding dimension $n-1$.

## Example

Let $\mathcal{C}_{3}=\{\emptyset, 12,13,23\}$ and $\mathcal{U}=\left\{U_{1}, U_{2}, U_{3}\right\}$ be a realization of $\mathcal{C}_{3}$.

## Example

Let $\mathcal{C}_{3}=\{\emptyset, 12,13,23\}$ and $\mathcal{U}=\left\{U_{1}, U_{2}, U_{3}\right\}$ be a realization of $\mathcal{C}_{3}$.
Then there exists points $a_{12}, a_{13}$, and $a_{23}$ such that

$$
a_{12} \in U_{1} \cap U_{2}, \quad a_{13} \in U_{1} \cap U_{3}, \quad a_{23} \in U_{2} \cap U_{3}
$$

## Example

Let $\mathcal{C}_{3}=\{\emptyset, 12,13,23\}$ and $\mathcal{U}=\left\{U_{1}, U_{2}, U_{3}\right\}$ be a realization of $\mathcal{C}_{3}$.
Then there exists points $a_{12}, a_{13}$, and $a_{23}$ such that

$$
a_{12} \in U_{1} \cap U_{2}, \quad a_{13} \in U_{1} \cap U_{3}, \quad a_{23} \in U_{2} \cap U_{3}
$$

Suppose toward contradiction that $\mathcal{C}_{3}$ has a realization in 1 dimension.
Then, $a_{12}, a_{13}$, and $a_{23}$ must be collinear.

## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$

## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$

## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$



## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$



## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$



## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$



## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$



## Example

$$
\mathcal{C}_{3}=\{\emptyset, 12,13,23\}
$$

$$
a_{12} \in U_{1} \cap U_{2} \quad a_{13} \in U_{1} \cap U_{3} \quad a_{23} \in U_{2} \cap U_{3}
$$



## Discussion

New Questions:

- Since every code is convex, what is the minimal embedding dimension of an arbitrary code?
- When is the minimal open/closed embedding dimension strictly greater than the minimal embedding dimension of a code?
- When is the minimal open/closed embedding dimension equal to the minimal embedding dimension of a code?


## Acknowledgements

I would like to thank:

- Advisor: Dr. Anne Shiu
- Graduate Student Mentor: Ola Sobieska
- Project Partner: Samuel Muthiah
- Funding: National Science Foundation
- Host: Texas A\&M University


## Thank you!

