NONVANISHING OF HECKE L-SERIES AND ℓ -TORSION IN CLASS GROUPS

ARIANNA IANUZZI, RIAD MASRI, ALEX MATHERS, MARIA ROSS, WEI-LUN TSAI

1. INTRODUCTION AND STATEMENT OF RESULTS

Let $K = \mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic field of discriminant -D with D > 3 and $D \equiv 3$ mod 4. Let \mathcal{O}_K be the ring of integers, $\operatorname{Cl}(K)$ be the ideal class group, h(-D) be the class number, and $\varepsilon(n) = (-D/n) = (n/D)$ be the Kronecker symbol associated to K. We view ε as a quadratic character of $(\mathcal{O}_K/\sqrt{-D}\mathcal{O}_K)^{\times}$ via the isomorphism

$$\mathbb{Z}/D\mathbb{Z} \cong \mathcal{O}_K/\sqrt{-D}\mathcal{O}_K$$

Let ψ_k be a Hecke character of K of conductor $\sqrt{-D}\mathcal{O}_K$ satisfying

$$\psi_k(\alpha \mathcal{O}_K) = \varepsilon(\alpha) \alpha^{2k-1} \quad \text{for} \quad (\alpha \mathcal{O}_K, \sqrt{-D} \mathcal{O}_D) = 1, \quad k \in \mathbb{Z}^+.$$
 (1.1)

One can use (1.1) to show that ψ_k satisfies (see [R4])

$$\psi_k(\mathfrak{a}) = \psi_k(\overline{\mathfrak{a}}) \quad \text{for ideals } \mathfrak{a} \text{ prime to } \sqrt{-D\mathcal{O}_K}.$$
 (1.2)

Next, let $d \equiv 1 \mod 4$ be a squarefree integer relatively prime to D. Then $(d/N(\cdot))$ is a primitive Hecke character of K of conductor $d\mathcal{O}_K$, and

$$\psi_{d,k} := (d/N(\cdot))\psi_k$$

is the Hecke character of K of conductor $d\sqrt{-D}\mathcal{O}_K$ given by the quadratic twist of ψ_k by $(d/N(\cdot))$. Clearly, $\psi_{d,k}$ also satisfies (1.2). To ease notation, we will sometimes write $\psi = \psi_{d,k}$.

Let $\Psi_{d,k}(D)$ be the set of all such Hecke characters ψ . Then $\#\Psi_{d,k}(D) = h(-D)$, and if ψ_0 is any such character then

$$\Psi_{d,k}(D) = \{\psi_0 \xi : \xi \in \widehat{\mathrm{Cl}}(\overline{K})\}.$$

The *L*-series of ψ is defined by

$$L(\psi, s) := \sum_{\mathfrak{a}} \psi(\mathfrak{a}) N(\mathfrak{a})^{-s}, \quad \operatorname{Re}(s) > k + \frac{1}{2}$$

where the sum is over nonzero integral ideals \mathfrak{a} of K. The *L*-series $L(\psi, s)$ has an analytic continuation to \mathbb{C} and satisfies a functional equation under $s \mapsto 2k - s$ with central value $L(\psi, k)$ and root number

$$W(\psi) = (-1)^{k-1} \operatorname{sign}(d) (-1)^{\frac{D+1}{4}}.$$
(1.3)

The Hecke characters ψ are examples of "canonical" Hecke characters in the sense of Rohrlich [R2]. These characters of great arithmetic interest. For example, the canonical Hecke characters were first studied by Gross [G], who constructed a "canonical" elliptic Q-curve A(D) associated to $\psi \in \Psi_{1,1}(D)$. In particular, he showed that the extended Hecke character $\chi_H := \psi \circ N_{H/K}$ of the Hilbert class field H of K corresponds to a unique (up to H-isogeny) Q-curve A(D)/H whose L-series factorizes as

$$L(A(D)/H,s) = L(\chi_H,s)L(\overline{\chi_H},s) = \prod_{\psi \in \Psi_{1,1}(D)} L(\psi,s)L(\overline{\psi},s).$$

Gross conjectured that

$$\operatorname{rank}(A(D)(H)) = \begin{cases} 0, & D \equiv 7 \mod 8\\ 2h(-D), & D \equiv 3 \mod 8. \end{cases}$$

Because the conjecture predicts an *exact* formula for the rank, the curves A(D)/H form an important test case for the Birch and Swinnerton-Dyer conjecture. Gross's conjecture is known due to the works [G, R1, R2, MR, MY]. More generally, a canonical Hecke character $\psi \in \Psi_{d,k}(D)$ corresponds to a *p*-adic Galois representation A_{ψ} , and one can study the order of the associated Bloch-Kato *p*-Selmer group $\operatorname{Sel}_p(A_{\psi}/K)$.

We denote the number of nonvanishing central values in the family $\Psi_{d,k}(D)$ by

$$NV_{d,k}(D) := \#\{\psi \in \Psi_{d,k}(D) : L(\psi, k) \neq 0\}$$

Moreover, note that the Galois group $G_k := \operatorname{Gal}(\overline{\mathbb{Q}}/K(\zeta_{2k-1}))$ acts on $\Psi_{d,k}(D)$ by

$$\psi \mapsto \psi^{\sigma}, \quad \sigma \in G_k.$$

The nonvanishing of the central values $L(\psi, k)$ was studied in [R1, R2, MR, Y, RVY, MY, LX] under the assumption that G_k acts transitively on $\Psi_{d,k}(D)$. In particular, by work of Shimura [Shi], this implies that if $L(\psi, k) \neq 0$ for some $\psi \in \Psi_{d,k}(D)$, then $NV_{d,k}(D) = h(-D)$. On the other hand, if G_k does *not* act transitively, then the existence of one nonvanishing central value no longer implies that all of the central values are nonvanishing. It is therefore of interest to understand how $NV_{d,k}(D)$ grows as $D \to \infty$.

Let K/\mathbb{Q} be a number field of discriminant D_K and degree n, and let $\operatorname{Cl}_{\ell}(K)$ be the ℓ -torsion subgroup of the ideal class group $\operatorname{Cl}(K)$. Assuming the Generalized Riemann Hypothesis (GRH), Ellenberg and Venkatesh [EV] proved the non-trivial bound

$$#Cl_{\ell}(K) \ll_{n,\epsilon} |D_K|^{\frac{1}{2} - \frac{1}{2\ell(n-1)} + \epsilon}.$$
 (1.4)

The second author [M] used this bound to prove that

$$NV_{d,k}(D) \gg_{\epsilon} D^{\frac{1}{2(2k-1)}-\epsilon}.$$
 (1.5)

Very recently, Ellenberg, Pierce, and Wood [EPW] combined results in [EV] with a new sieve method (which they call the "Chebyshev" sieve) to prove that (1.4) holds unconditionally for $n \leq 5$, up to an exceptional set of discriminants with natural density zero. In this paper, we will combine the works [M, EPW] to prove an asymptotic formula with a power-saving error term for the number of discriminants D for which (1.5) holds unconditionally. In particular, will prove that (1.5) holds unconditionally for 100% of imaginary quadratic fields within certain families.

In order to state our main results, we fix the following assumptions and notation.

Fix a pair (d, k) such that $\operatorname{sign}(d) = (-1)^{k-1}$. Let $\mathcal{S}_{d,k}$ be the set of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-D})$ such that $D \equiv 7 \mod 8$, all prime divisors of d split in K, and D is either prime or coprime to 2k - 1. For X > 0 define the following subsets of $\mathcal{S}_{d,k}$:

$$\mathcal{S}_{d,k}(X) := \{ K \in \mathcal{S}_{d,k} : D \le X \}$$

and

$$\mathcal{S}_{d,k}^{\rm NV}(X) := \{ K \in \mathcal{S}_{d,k}(X) : NV_{d,k}(D) \gg_{\epsilon} D^{\frac{1}{2(2k-1)}-\epsilon} \}.$$

Remark 1.1. The conditions on D in the definition of $S_{d,k}$ are technical conditions needed for the proofs. For example, the congruence $D \equiv 7 \mod 8$ ensures that the root number $W(\psi) = 1$ for all $\psi \in \Psi_{d,k}(D)$, and the splitting condition ensures that Heegner points of discriminant -D exist on the modular curve $X_0(4d^2)$.

Our main result is the following asymptotic formula with a power-saving error term.

Theorem 1.2. Given the prime factorizations $d = \prod_{i=1}^{m} p_i$ and $2k - 1 = \prod_{i=1}^{n} q_i^{a_i}$, we have

$$#\mathcal{S}_{d,k}^{\rm NV}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{1}{6\zeta(2)} X + O_{d,k}(X^{1-\frac{1}{2(2k-1)}})$$
(1.6)

as $X \to \infty$.

Corollary 1.3. We have

$$\frac{\#\mathcal{S}_{d,k}^{\rm NV}(X)}{\#\mathcal{S}_{d,k}(X)} = 1 + O_{d,k}(X^{-\frac{1}{2(2k-1)}})$$
(1.7)

as $X \to \infty$. In particular, the bound (1.5) holds for 100% of imaginary quadratic fields $K \in S_{d,k}$.

An important component of the proof of Theorem 1.2 is an effective way of producing at least one nonvanishing central value *without* assuming that G_k acts transitively on $\Psi_{d,k}(D)$. We will prove the following effective nonvanishing theorem.

Theorem 1.4. Fix a pair (d, k) such that $d \equiv 1 \mod 4$ is squarefree and $\operatorname{sign}(d) = (-1)^{k-1}$. Let $D \equiv 7 \mod 8$ be such that all prime divisors of d split in $K = \mathbb{Q}(\sqrt{-D})$. Then if $D > 64d^4(k+1)^4$, there exists at least one $\psi \in \Psi_{d,k}(D)$ such that $L(\psi, k) \neq 0$.

To prove Theorem 1.4, we will use a variation on the geometric approach in [BD] which is based on the position of Heegner points in the cusp at infinity of a modular curve. This notion of "quantification in the cusp" using Heegner points to prove nonvanishing theorems originated in [MV], and has since been employed in many other instances.

2. Nonvanishing of half-integral weight theta series

Fix a pair (d, ℓ) where $d \equiv 1 \mod 4$ is a squarefree integer and $\ell \in \mathbb{Z}_{\geq 0}$ is a nonnegative integer such that $\operatorname{sign}(d) = (-1)^{\ell}$. Define the theta series

$$\theta_{d,\ell}(z) := (2y)^{-\ell/2} \sum_{(n,d)=1} \left(\frac{d}{n}\right) H_{\ell}(n\sqrt{2y})e(n^2 z), \quad z = x + iy \in \mathbb{H}, \quad e(z) := e^{2\pi i z}$$

where $H_{\ell}(x)$ is the degree ℓ Hermite polynomial

$$H_{\ell}(x) := \frac{1}{(\sqrt{8\pi})^{\ell}} \sum_{j=0}^{\lfloor \ell/2 \rfloor} \frac{\ell!}{j!(\ell-2j)!} (-1)^j (\sqrt{8\pi}x)^{\ell-2j}.$$

The theta series $\theta_{d,\ell}(z)$ is a weight $\ell + \frac{1}{2}$ modular form for $\Gamma_0(4d^2)$ (see []).

To prove Theorem 1.4, we will need the following effective zero-free region for $\theta_{d,\ell}(z)$ which is of independent interest.

Proposition 2.1. If $y = \text{Im}(z) > (\ell + 2)^2$, then $\theta_{d,\ell}(z) \neq 0$.

The following inequalities will be used in the proof of Proposition 2.1.

Lemma 2.2. For $x > \ell$ we have

$$\left(\frac{8\pi-2}{8\pi-1}\right)x^{\ell} \le H_{\ell}(x) \le x^{\ell}.$$

Proof. First write

$$H_{\ell}(x) = \sum_{j=0}^{\lfloor \ell/2 \rfloor} \frac{\ell!}{j!(\ell-2j)!} (-1)^{j} \frac{x^{\ell-2j}}{(8\pi)^{j}} = x^{\ell} - \frac{\ell!}{(\ell-2)!8\pi} x^{\ell-2} + x^{\ell} \sum_{j=2}^{\lfloor \ell/2 \rfloor} c_{\ell,j},$$

where

$$c_{\ell,j} := \frac{\ell!}{j!(\ell-2j)!} \frac{(-1)^j}{(8\pi)^j x^{2j}}.$$

Now, for $x \ge \ell$ we have the bound

$$\left|\frac{c_{\ell,j+1}}{c_{\ell,j}}\right| = \frac{(\ell-2j)(\ell-2j-1)}{(j+1)8\pi x^2} \le \frac{\ell^2}{8\pi x^2} \le \frac{1}{8\pi}.$$

Then it follows that

$$\begin{aligned} H_{\ell}(x) &\leq x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} + \sum_{j=2}^{\infty} |c_{\ell,j}| \right] \\ &\leq x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} + \frac{\ell!}{(\ell-2)!8\pi x^{2}} \sum_{j=1}^{\infty} \left(\frac{1}{8\pi}\right)^{j} \right] \\ &= x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} + \frac{\ell!}{(\ell-2)!8\pi x^{2}} \left(\frac{1}{8\pi-1}\right) \right] \\ &= x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} \left(\frac{8\pi-2}{8\pi-1}\right) \right] \\ &\leq x^{\ell}. \end{aligned}$$

On the other hand, arguing similarly with the reverse triangle inequality, for $x \ge \ell$ we have

$$\begin{split} H_{\ell}(x) &\geq x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} - \sum_{j=2}^{\infty} |c_{\ell,j}| \right] \\ &= x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} - \frac{\ell!}{(\ell-2)!8\pi x^{2}} \sum_{j=1}^{\infty} \left(\frac{1}{8\pi}\right)^{j} \right] \\ &= x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} \sum_{j=0}^{\infty} \left(\frac{1}{8\pi}\right)^{j} \right] \\ &= x^{\ell} \left[1 - \frac{\ell!}{(\ell-2)!8\pi x^{2}} \left(\frac{8\pi}{8\pi-1}\right) \right] \\ &= x^{\ell} \left[1 - \frac{\ell(\ell-1)}{(8\pi-1)x^{2}} \right] \\ &\geq x^{\ell} \left[1 - \frac{\ell^{2}}{(8\pi-1)x^{2}} \right] \\ &\geq x^{\ell} \left[1 - \frac{1}{(8\pi-1)} \right] \\ &= \left(\frac{8\pi-2}{8\pi-1}\right) x^{\ell}. \end{split}$$

Lemma 2.3. If $t > (\ell + 2)^2$ then

$$t - \frac{\ell}{4\pi} \log(\pi t) > \frac{\ell+1}{\pi} \log(2)$$
 (2.1)

and

$$t - \frac{\ell}{12\pi} \log(t) > \frac{3\ell + 2}{12\pi} \log(2).$$
(2.2)

Proof. We first consider the inequality (2.1). Clearly, we see that

$$t - \frac{\ell}{4\pi} \log(\pi t) > \frac{\ell+1}{\pi} \log(2) \iff 4\pi t - \ell \log(16\pi t) > 4\log 2.$$

Moreover, the function $g_{\ell}(t) := 4\pi t - \ell \log(16\pi t)$ is strictly increasing for $t > \frac{\ell}{4\pi}$. Hence, if we assume that $t > (\ell + 2)^2 > \frac{\ell}{4\pi}$, then we have

$$g_{\ell}(t) > g_{\ell}((\ell+2)^2) = 4\pi(\ell+2)^2 - \ell \log(16\pi(\ell+2)^2)$$

= $16\pi + \ell(16\pi - \log 16\pi) + \ell(4\pi\ell - 2\log(\ell+2))$
> $4\log 2.$

On the other hand, the inequality (2.2) follows from (2.1) since

$$t - \frac{\ell}{12\pi} \log(t) > t - \frac{\ell}{4\pi} \log(\pi t) > \frac{\ell+1}{\pi} \log(2) > \frac{3\ell+2}{12\pi} \log(2).$$

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Using the definition of $H_{\ell}(x)$ and the Kronecker symbol $\left(\frac{d}{n}\right)$, along with the condition $\operatorname{sign}(d) = (-1)^{\ell}$, for $n \neq 0$ we have

$$\left(\frac{d}{-n}\right)H_{\ell}(-n\sqrt{2y}) = \operatorname{sign}(d)\left(\frac{d}{n}\right)(-1)^{\ell}H_{\ell}(n\sqrt{2y}) = (-1)^{2\ell}\left(\frac{d}{n}\right)H_{\ell}(n\sqrt{2y}) = \left(\frac{d}{n}\right)H_{\ell}(n\sqrt{2y}).$$

Then the thete series can be written as

Then the theta series can be written as

$$\theta_{d,\ell}(z) = (2y)^{-\ell/2} \left[\left(\frac{d}{0}\right) H_{\ell}(0) + 2\sum_{n=1}^{\infty} \left(\frac{d}{n}\right) H_{\ell}(n\sqrt{2y})e(n^2 z) \right].$$
(2.3)

From here forward we assume that $y > (\ell + 2)^2$. We will consider the cases d = 1 and $d \neq 1$ separately.

Case 1 (d = 1): If d = 1, then

$$\left| \left(\frac{1}{0} \right) H_{\ell}(0) \right| = \frac{\ell!}{(8\pi)^{\ell/2} \left(\ell/2 \right)!}$$

Therefore, by (2.3) if

$$\sum_{n=1}^{\infty} |H_{\ell}(n\sqrt{2y})e(n^2 z)| < \frac{\ell!}{2(8\pi)^{\ell/2} \, (\ell/2)!},$$

then the reverse triangle inequality implies that $\theta_{1,\ell}(z) \neq 0$.

Consider the function

$$f_{\ell}(t) := \frac{\log(2^{t-1}t^{\ell})}{2\pi(t^2 - 1)}$$

Since $f_{\ell}(t)$ is strictly decreasing for t > 1, we have

$$y > (\ell + 2)^2 > f_{\ell}(2) \ge f_{\ell}(n), \quad n \ge 2.$$

The inequality $y > f_{\ell}(n)$ is equivalent to

$$\frac{n^{\ell}}{e^{2\pi(n^2-1)y}} < 2^{1-n}, \quad n \ge 2.$$
(2.4)

We can now estimate the series as

$$\begin{split} \sum_{n=1}^{\infty} |H_{\ell}(n\sqrt{2y})e(n^2z)| &\leq (2y)^{\ell/2} \sum_{n=1}^{\infty} \frac{n^{\ell}}{e^{2\pi n^2 y}} \\ &= (2y)^{\ell/2} \frac{1}{e^{2\pi y}} \sum_{n=1}^{\infty} \frac{n^{\ell}}{e^{2\pi (n^2 - 1)y}} \\ &\leq (2y)^{\ell/2} \frac{1}{e^{2\pi y}} \sum_{n=1}^{\infty} 2^{1-n} \\ &= (2y)^{\ell/2} \frac{2}{e^{2\pi y}} \\ &< \frac{1}{2(8\pi)^{\ell/2}} \\ &\leq \frac{\ell!}{2(8\pi)^{\ell/2} (\ell/2)!}, \end{split}$$

where the first inequality follows from the upper bound in Lemma 2.2 (since $y > (\ell + 2)^2$ we have $n\sqrt{2y} \ge \ell$ for all $n \ge 1$), the second inequality follows from (2.4), and a short calculation shows that the third inequality is equivalent to Lemma 2.3, inequality (2.1). This proves Case 1.

Case 2 $(d \neq 1)$: Since $d \neq 1$, we have $\left(\frac{d}{0}\right) = 0$, and (2.3) can be written as

$$\theta_{d,\ell}(z) = 2(2y)^{-\ell/2} \left[H_{\ell}(\sqrt{2y})e(z) + \sum_{n=2}^{\infty} \left(\frac{d}{n}\right) H_{\ell}(n\sqrt{2y})e(n^2 z) \right]$$

Therefore, if

$$\sum_{n=2}^{\infty} |H_{\ell}(n\sqrt{2y})e(n^2z)| < |H_{\ell}(\sqrt{2y})e(z)|,$$

then the reverse triangle inequality implies that $\theta_{d,\ell}(z) \neq 0$.

We have $H_0(\sqrt{2y}) = 1$ and $H_1(\sqrt{2y}) = \sqrt{2y} > 1$. Moreover, if $\ell \ge 2$ then by the lower bound in Lemma 2.2 we have

$$H_{\ell}(\sqrt{2y}) \ge \frac{8\pi - 2}{8\pi - 1}(2y)^{\ell/2} > 1.$$

Hence it suffices to show that

$$\sum_{n=2}^{\infty} |H_{\ell}(n\sqrt{2y})e(n^2 z)| < |e(z)| = \frac{1}{e^{2\pi y}}.$$

A modification of the argument in Case 1 shows that

$$\sum_{n=2}^{\infty} |H_{\ell}(n\sqrt{2y})e(n^2z)| \le (2y)^{\ell/2} \frac{2^{\ell+1}}{e^{8\pi y}} < \frac{1}{e^{2\pi y}},$$

where a short calculation shows that the second inequality in equivalent to Lemma 2.3, inequality (2.2). This proves Case 2.

3. Proof of Theorem 1.4

Fix a pair (d, k) where $d \equiv 1 \mod 4$ is a squarefree integer and $k \in \mathbb{Z}^+$ is a positive integer such that $\operatorname{sign}(d) = (-1)^{k-1}$. Consider the C^{∞} function $F_{d,k} : \mathbb{H} \to \mathbb{R}_{\geq 0}$ defined by

$$F_{d,k}(z) := \operatorname{Im}(z)^{k-\frac{1}{2}} |\theta_{d,k-1}(z)|^2.$$

Since $\theta_{d,k-1}$ is a weight $k - \frac{1}{2}$ modular form for $\Gamma_0(4d^2)$, the function $F_{d,k}$ is $\Gamma_0(4d^2)$ -invariant.

Let $D \equiv 7 \mod 8$ be a positive integer such that all prime divisors of d split in $K = \mathbb{Q}(\sqrt{-D})$. Then Heegner points of discriminant -D exist on the modular curve $X_0(4d^2) := \Gamma_0(4d^2) \setminus \mathbb{H}$. In particular, we can fix a square root $r \mod 8d^2$ of $-D \mod 16d^2$, and for any primitive integral ideal $\mathfrak{a} \subset \mathcal{O}_K$ we can write

$$\mathfrak{a} = \mathbb{Z}a + \mathbb{Z}\left(\frac{-b + \sqrt{-D}}{2}\right), \quad a = N_{K/\mathbb{Q}}(\mathfrak{a}), \quad b \in \mathbb{Z},$$

where $b \equiv r \mod 8d^2$ and $b^2 \equiv -D \mod 16ad^2$. Then

$$\tau_{[\mathfrak{a}]}^{(r)} = \frac{-b + \sqrt{-D}}{8ad^2} \in \mathbb{H}$$

defines a Heegner point on $X_0(4d^2)$ which depends only on the ideal class $[\mathfrak{a}]$ and on $r \mod 8d^2$.

Define the Cl(K)-orbit of Heegner points

$$\mathcal{O}_{D,4d^2,r} := \{ \tau_{[\mathfrak{a}]}^{(r)} : [\mathfrak{a}] \in \mathrm{Cl}(K) \}$$

Then by [KMY, Theorem 3.5], we have the following exact formula for the average of the central values

$$\frac{1}{h(-D)}\sum_{\psi\in\Psi_{d,k}(D)}L(\psi,k) = c(k)\frac{\pi}{\sqrt{D}}\sum_{[\mathfrak{a}]\in\operatorname{Cl}(K)}F_{d,k}(\tau_{[\mathfrak{a}]}^{(r)}),\tag{3.1}$$

where $c(k) := 2(8\pi)^{k-1}/(k-1)!$. This formula is independent of the choice of r.

Now, let $\mathfrak{a} = \mathcal{O}_K$ (so that $N_{K/\mathbb{O}}(\mathfrak{a}) = 1$) and write

$$\tau := \tau_{[\mathcal{O}_K]}^{(r)} \frac{-b + \sqrt{-D}}{8d^2}.$$

Since $F_{d,k}$ is nonnegative, we have

$$\sum_{\psi \in \Psi_{d,k}(D)} L(\psi, k) \ge \pi c(k) \frac{h(-D)}{\sqrt{D}} F_{d,k}(\tau).$$

By Proposition 2.1, if $\text{Im}(\tau) > (k+1)^2$ then $F_{d,k}(\tau) > 0$. But

$$Im(\tau) = \frac{\sqrt{D}}{8d^2} > (k+1)^2 \iff D > 64d^4(k+1)^4.$$

In particular, we have shown that if $D > 64d^4(k+1)^4$, then

$$\sum_{\psi \in \Psi_{d,k}(D)} L(\psi,k) > 0$$

which implies that there exists at least one $\psi \in \Psi_{d,k}(D)$ such that $L(\psi, k) \neq 0$. This completes the proof of Theorem 1.4.

4. Proofs of Theorem 1.2 and Corollary 1.3

In this section we prove Theorem 1.2 and Corollary 1.3.

For convenience, we recall the setup from the introduction. Fix a pair (d, k) such that $\operatorname{sign}(d) = (-1)^{k-1}$. Let $\mathcal{S}_{d,k}$ be the set of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-D})$ such that $D \equiv 7 \mod 8$, all prime divisors of d split in K, and D is either prime or coprime to 2k - 1. For X > 0 define the following subsets of $\mathcal{S}_{d,k}$:

$$\mathcal{S}_{d,k}(X) := \{ K \in \mathcal{S}_{d,k} : D \le X \}$$

and

$$\mathcal{S}_{d,k}^{\text{NV}}(X) := \{ K \in \mathcal{S}_{d,k}(X) : NV_{d,k}(D) \gg_{\epsilon} D^{\frac{1}{2(2k-1)}-\epsilon} \}.$$

In addition, we will need the subset

 $\mathcal{S}_{d,k}^{\mathrm{Tor}}(X) := \{ K \in \mathcal{S}_{d,k}(X) : \text{ the bound (1.4) holds with } n = 2 \text{ and } \ell = 2k - 1 \}.$

We begin by giving asymptotic formulae with power-saving error terms for $\#S_{d,k}(X)$ and $\#S_{d,k}^{\text{Tor}}(X)$.

Proposition 4.1. Given the prime factorizations $d = \prod_{i=1}^{m} p_i$ and $2k - 1 = \prod_{i=1}^{n} q_i^{a_i}$, we have

$$\#\mathcal{S}_{d,k}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O_k \left(2d \left(\prod_{i=1}^{n} q_i \right) X^{\frac{1}{2}} \right)$$

and

$$\#\mathcal{S}_{d,k}^{\mathrm{Tor}}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O_k(X^{1-\frac{1}{2(2k-1)}})$$

as $X \to \infty$.

Proof. First we decompose the set $\mathcal{S}_{d,k}(X)$ into the disjoint union

$$\mathcal{S}_{d,k}(X) = \{ K \in \mathcal{S}_{d,k}(X) : (D, 2k - 1) = 1 \} \sqcup \{ K \in \mathcal{S}_{d,k}(X) : D \text{ is prime and } (D, 2k - 1) \neq 1 \}.$$

The set on the right hand side of this decomposition consists of the prime divisors $p \leq X$ of 2k-1. Therefore, if we let $S^1_{d,k}(X)$ denote the set on the left hand side of this decomposition, then

$$#\mathcal{S}_{d,k}(X) = #\mathcal{S}_{d,k}^1(X) + t(2k-1;X),$$

where t(2k-1; X) denotes the number of prime divisors $p \leq X$ of 2k-1.

We will need the following result of Ellenberg, Pierce and Wood [EPW, Proposition 8.1] which counts quadratic number fields of bounded discriminant with prescribed local conditions.

Proposition 4.2. Let P be a finite set of primes of K. For each $p \in P$ we choose a splitting type at p and assign a corresponding density as follows:

$$\begin{split} \delta_p &:= \frac{1}{2} (1+p^{-1})^{-1} & \text{if } p \text{ splits} \\ \delta_p &:= \frac{1}{2} (1+p^{-1})^{-1} & \text{if } p \text{ is inert} \\ \delta_p &:= (1+p)^{-1} & \text{if } p \text{ is ramified} \end{split}$$

Let $e = \prod_{p \in P} p$ and $\delta_e = \prod_{p \in P} \delta_p$. Let $N_2^{\pm}(X; P)$ be the number of real (respectively imaginary) quadratic extensions of \mathbb{Q} with fundamental discriminant $|D_K| \leq X$ such that for each $p \in P$ with prescribed splitting type in K as above, then we have

$$N_2^{\pm}(X;P) = \frac{\delta_e}{2\zeta(2)}X + O(eX^{\frac{1}{2}}).$$

In order to use Proposition 4.2 to count $\mathcal{S}^1_{d,k}(X)$, we must further decompose this set into subsets satisfying appropriate local conditions.

Note that the condition $D \equiv 7 \mod 8$ is equivalent to having the prime 2 split in K, and the condition (D, 2k - 1) = 1 is equivalent to having all prime divisors of 2k - 1 unramified in K.

Now, consider the prime factorizations $d = \prod_{i=1}^{m} p_i$ (recall that d is squarefree) and $2k - 1 = \prod_{i=1}^{n} q_i^{a_i}$. Let $S_{d,k}^2(X)$ be the subset of all $K \in S_{d,k}^1(X)$ such that the primes in the set

$$P_d := \{2, p_1, \dots, p_m\}$$

split in K. Similarly, let $\mathcal{S}^3_{d,k}(X)$ be the subset of all $K \in \mathcal{S}^1_{d,k}(X)$ such that the primes in the set P_d split in K and the primes in the set

$$Q_k := \{q_1, \ldots, q_n\}$$

ramify in K. Then by the preceding observations, we have

$$\mathcal{S}^1_{d,k}(X) = \mathcal{S}^2_{d,k}(X) \setminus \mathcal{S}^3_{d,k}(X),$$

so that

$$\#\mathcal{S}^{1}_{d,k}(X) = \#\mathcal{S}^{2}_{d,k}(X) - \#\mathcal{S}^{3}_{d,k}(X).$$

Define the set of primes $R_{d,k} := P_d \cup Q_k$. Then by Proposition 4.2, we have

$$\#\mathcal{S}_{d,k}^2(X) = N^-(X; P_d) = 2^{-m} \prod_{i=1}^m \left(\frac{1}{1+p_i^{-1}}\right) \frac{X}{6\zeta(2)} + O(2dX^{\frac{1}{2}})$$

and

$$\#\mathcal{S}_{d,k}^{3}(X) = N^{-}(X; R_{d,k}) = 2^{-m} \prod_{i=1}^{m} \left(\frac{1}{1+p_{i}^{-1}}\right) \prod_{i=1}^{n} \left(\frac{1}{1+q_{i}}\right) \frac{X}{6\zeta(2)} + O\left(2d\left(\prod_{i=1}^{n} q_{i}\right) X^{\frac{1}{2}}\right).$$

It follows that

$$\#\mathcal{S}_{d,k}^{1}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O\left(2d\left(\prod_{i=1}^{n} q_i \right) X^{\frac{1}{2}} \right).$$

Then using that

$$t(2k-1;X) \ll_k 1,$$

we get the asymptotic formula

$$\#\mathcal{S}_{d,k}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O_k \left(2d \left(\prod_{i=1}^{n} q_i \right) X^{\frac{1}{2}} \right)$$

Next, let $\mathcal{S}_{d,k}^{\neg \text{Tor}}(X)$ denote the subset of all $K \in \mathcal{S}_{d,k}(X)$ which *fail* to satisfy the bound (1.4) with $\ell = 2k - 1$, and write

$$#\mathcal{S}_{d,k}^{\operatorname{tor}}(X) = #\mathcal{S}_{d,k}(X) - #\mathcal{S}_{d,k}^{\neg \operatorname{Tor}}(X)$$

As a consequence of [EPW, Theorem 1], we have

 $#\mathcal{S}_{d,k}^{\neg \operatorname{Tor}}(X) \ll #\{ \text{quadratic fields } K/\mathbb{Q} \text{ with } |D_K| \le X \text{ which fail to satisfy (1.4) with } \ell = 2k-1 \} \\ \ll X^{1-\frac{1}{2(2k-1)}}.$ (4.1)

This gives the asymptotic formula

$$\#\mathcal{S}_{d,k}^{\mathrm{Tor}}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O_k(X^{1-\frac{1}{2(2k-1)}}).$$

Proof of Theorem 1.2. Let

$$c_{d,k} := 64d^4(k+1)^4$$

be the constant appearing in Theorem 1.4. Then for $X \gg c_{d,k}$, we decompose the set $\mathcal{S}_{d,k}^{\text{Tor}}(X)$ into the disjoint union

$$\mathcal{S}_{d,k}^{\mathrm{Tor}}(X) = \{ K \in \mathcal{S}_{d,k}^{\mathrm{Tor}}(X) : D < c_{d,k} \} \sqcup \{ K \in \mathcal{S}_{d,k}^{\mathrm{Tor}}(X) : D \ge c_{d,k} \} =: \mathcal{S}_{d,k}^{\mathrm{Tor}}(c_{d,k}) \sqcup \mathcal{S}_{d,k}^{\mathrm{Tor},1}(X).$$

Lemma 4.3. We have $S_{d,k}^{\text{Tor},1}(X) \subset S_{d,k}^{\text{NV}}(X)$.

Proof. Let $K \in \mathcal{S}_{d,k}^{\text{Tor},1}(X)$ and define the cyclotomic extension $N := K(\zeta_{2k-1})$ where ζ_{2k-1} is a primitive (2k-1)-th root of unity. Recall that the Galois group $G_k := \text{Gal}(\overline{\mathbb{Q}}/N)$ acts on $\Psi_{d,k}(D)$ by

$$\psi \mapsto \psi^{\sigma} := \sigma \circ \psi, \quad \sigma \in G_k.$$

For a fixed $\psi_0 \in \Psi_{d,k}(D)$, we denote the Galois orbit of ψ_0 by

$$\mathcal{O}_{\psi_0} = \{\psi_0^{\sigma} : \sigma \in G_k\}$$

Now, since $D \ge c_{d,k}$, by Theorem 1.4 there exists a $\psi_0 \in \Psi_{d,k}(D)$ such that $L(\psi_0, k) \ne 0$. Also, using work of Shimura [Shi], one can show that for any $\sigma \in G_k$, we have

 $L(\psi_0^{\sigma}, k) \neq 0$ if and only if $L(\psi_0, k) \neq 0$.

Hence it follows that

$$NV_{d,k}(D) \ge #\mathcal{O}_{\psi_0}.$$

On the other hand, by [M, Proposition 1.1] we have

$$\#\mathcal{O}_{\psi_0} = \frac{h(-D)}{\#\mathrm{Cl}_{2k-1}(K)}$$

Therefore

$$NV_{d,k}(D) \ge \frac{h(-D)}{\#\mathrm{Cl}_{2k-1}(K)}$$

 $h(-D) \gg D^{1/2-\epsilon}$

By Siegel's theorem, we have

Then since K satisfies the bound (1.4) with
$$\ell = 2k - 1$$
, we get

$$NV_{d,k}(D) \gg_{\epsilon} D^{\frac{1}{2(2k-1)}-\epsilon}.$$

It follows that $K \in \mathcal{S}_{d,k}^{\mathrm{NV}}(X)$.

Using Lemma 4.3, we get the decomposition

$$\mathcal{S}_{d,k}^{\mathrm{NV}}(X) = \mathcal{S}_{d,k}^{\mathrm{Tor},1}(X) \sqcup \left(\mathcal{S}_{d,k}^{\mathrm{NV}}(X) \setminus \mathcal{S}_{d,k}^{\mathrm{Tor},1}(X)\right)$$

Now, since

$$#\mathcal{S}_{d,k}^{\mathrm{Tor}}(c_{d,k}) \ll_{d,k} 1,$$

by Proposition 4.1 we get

$$#\mathcal{S}_{d,k}^{\text{Tor},1}(X) = #\mathcal{S}_{d,k}^{\text{Tor}}(X) - #\mathcal{S}_{d,k}^{\text{Tor}}(c_{d,k}) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O_{d,k}(X^{1-\frac{1}{2(2k-1)}}).$$

Also, since

$$\mathcal{S}_{d,k}^{\mathrm{NV}}(X) \setminus \mathcal{S}_{d,k}^{\mathrm{Tor},1}(X) \subset \mathcal{S}_{d,k}^{\mathsf{-Tor}}(X),$$

the bound (4.1) gives

$$\#\left(\mathcal{S}_{d,k}^{\mathrm{NV}}(X)\setminus\mathcal{S}_{d,k}^{\mathrm{Tor},1}(X)\right)\leq\#\mathcal{S}_{d,k}^{\mathrm{Tor}}(X)\ll X^{1-\frac{1}{2(2k-1)}}.$$

Hence

$$\#\mathcal{S}_{d,k}^{\mathrm{NV}}(X) = 2^{-m} \left(1 - \prod_{i=1}^{n} \left(\frac{1}{1+q_i} \right) \right) \prod_{i=1}^{m} \left(\frac{1}{1+p_i^{-1}} \right) \frac{X}{6\zeta(2)} + O_{d,k}(X^{1-\frac{1}{2(2k-1)}}).$$

This proves Theorem 1.2.

Finally, by combining the preceding asymptotic formula with Proposition 4.1, we get

$$\frac{\#\mathcal{S}_{d,k}^{\rm NV}(X)}{\#\mathcal{S}_{d,k}(X)} = 1 + O_{d,k}(X^{-\frac{1}{2(2k-1)}}).$$

This proves Corollary 1.3.

References

- [BK] S. Bloch and K. Kato, *L*-functions and Tamagawa numbers of motives. The Grothendieck Festschrift I, P. Cartier, et al., eds., Prog. in Math. **86**, Boston: Birkhauser (1990) 333–400.
- [BD] G. Boxer and P. Diao, *Effective nonvanishing of canonical Hecke L-functions*. Proc. Amer. Math. Soc. **138** (2010), 3891–3897.
- [EV] J. Ellenberg and A. Venkatesh, *Reflection Principles and Bounds for Class Group Torsion*. Int. Math. Res. Not. no.1, Art ID rnm002 (2007).
- [EPW] J. Ellenberg, L. B. Pierce, M. Matchett Wood, On *l*-torsion in Class Groups of Number Fields. arXiv:1606.06103 [math.NT].
- [G] B. Gross, Arithmetic on elliptic curves with complex multiplication. With an appendix by B. Mazur. Lecture Notes in Mathematics, **776**. Springer, Berlin, 1980. iii+95 pp.
- [KMY] B. D. Kim, R. Masri, and T. Yang, Nonvanishing of Hecke L-Functions and the Bloch-Kato Conjecture, Mathematische Annalen, vol. 349 (2011), 301-343.
- [LX] C. Liu and L. Xu, The vanishing order of certain Hecke L-functions of imaginary quadratic fields, J. Number Theory, **108** (2004), 76–89.
- [M2] R. Masri, Asymptotics for sums of central values of canonical Hecke L-series. Int. Math. Res. Not. IMRN 2007, no. 19, Art. ID rnm065, 27 pp.
- [M] R. Masri, Quantitative nonvanishing of L-series associated to canonical Hecke characters. Int. Math. Res. Not. IMRN 2007, no. 19, Art. ID rnm070, 16 pp.
- [MV] P. Michel and A. Venkatesh, *Heegner points and non-vanishing of Rankin/Selberg L-functions*. Analytic number theory, 169–183, Clay Math. Proc., **7**, Amer. Math. Soc., Providence, RI, 2007.
- [MY] S. D. Miller and T. Yang, Nonvanishing of the central derivative of canonical Hecke L-functions. Math. Res. Lett. 7 (2000), 263–277.
- [MR] H. Montgomery and D. Rohrlich, On the L-functions of canonical Hecke characters of imaginary quadratic fields. II, Duke Math. J. 49 (1982), 937–942.
- [RVY] F. Rodriguez-Villegas and T. Yang, Central values of Hecke L-functions of CM number fields. Duke Math. J. **98** (1999), 541–564.
- [R1] D. Rohrlich, The nonvanishing of certain Hecke L-functions at the center of the critical strip. Duke Math. J. 47 (1980), 223–232.
- [R2] D. Rohrlich, On the L-functions of canonical Hecke characters of imaginary quadratic fields. Duke Math. J. 47 (1980), 547–557.
- [R3] D. Rohrlich, Galois conjugacy of unramified twists of Hecke characters. Duke Math. J. 47 (1980), 695–703.
- [R4] D. Rohrlich, Root numbers. Arithmetic of L-functions, 353–448, IAS/Park City Math. Ser., 18, Amer. Math. Soc., Providence, RI, 2011.
- [Shi] G. Shimura, The special values of the zeta functions associated to cusp forms, Comm. Pure Appl. Math. 29 (1976), 783-804.
- [Y] T. Yang, Nonvanishing of central Hecke L-values and rank of certain elliptic curves. Compositio Math. 117 (1999), 337–359.