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1. Introduction and statement of results

Let K = Q(
√
−D) be an imaginary quadratic field of discriminant −D with D > 3 and D ≡ 3

mod 4. Let OK be the ring of integers, Cl(K) be the ideal class group, h(−D) be the class number,
and ε(n) = (−D/n) = (n/D) be the Kronecker symbol associated to K. We view ε as a quadratic
character of (OK/

√
−DOK)× via the isomorphism

Z/DZ ∼= OK/
√
−DOK .

Let ψk be a Hecke character of K of conductor
√
−DOK satisfying

ψk(αOK) = ε(α)α2k−1 for (αOK ,
√
−DOD) = 1, k ∈ Z+. (1.1)

One can use (1.1) to show that ψk satisfies (see [R4])

ψk(a) = ψk(a) for ideals a prime to
√
−DOK . (1.2)

Next, let d ≡ 1 mod 4 be a squarefree integer relatively prime to D. Then (d/N(·)) is a primitive
Hecke character of K of conductor dOK , and

ψd,k := (d/N(·))ψk
is the Hecke character of K of conductor d

√
−DOK given by the quadratic twist of ψk by (d/N(·)).

Clearly, ψd,k also satisfies (1.2). To ease notation, we will sometimes write ψ = ψd,k.
Let Ψd,k(D) be the set of all such Hecke characters ψ. Then #Ψd,k(D) = h(−D), and if ψ0 is

any such character then

Ψd,k(D) = {ψ0ξ : ξ ∈ Ĉl(K)}.
The L–series of ψ is defined by

L(ψ, s) :=
∑
a

ψ(a)N(a)−s, Re(s) > k +
1

2

where the sum is over nonzero integral ideals a of K. The L–series L(ψ, s) has an analytic continu-
ation to C and satisfies a functional equation under s 7→ 2k− s with central value L(ψ, k) and root
number

W (ψ) = (−1)k−1sign(d)(−1)
D+1
4 . (1.3)

The Hecke characters ψ are examples of “canonical” Hecke characters in the sense of Rohrlich
[R2]. These characters of great arithmetic interest. For example, the canonical Hecke characters
were first studied by Gross [G], who constructed a “canonical” elliptic Q-curve A(D) associated
to ψ ∈ Ψ1,1(D). In particular, he showed that the extended Hecke character χH := ψ ◦ NH/K of
the Hilbert class field H of K corresponds to a unique (up to H-isogeny) Q-curve A(D)/H whose
L–series factorizes as

L(A(D)/H, s) = L(χH , s)L(χH , s) =
∏

ψ∈Ψ1,1(D)

L(ψ, s)L(ψ, s).

1
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Gross conjectured that

rank(A(D)(H)) =

{
0, D ≡ 7 mod 8

2h(−D), D ≡ 3 mod 8.

Because the conjecture predicts an exact formula for the rank, the curves A(D)/H form an im-
portant test case for the Birch and Swinnerton-Dyer conjecture. Gross’s conjecture is known due
to the works [G, R1, R2, MR, MY]. More generally, a canonical Hecke character ψ ∈ Ψd,k(D)
corresponds to a p-adic Galois representation Aψ, and one can study the order of the associated
Bloch-Kato p-Selmer group Selp(Aψ/K).

We denote the number of nonvanishing central values in the family Ψd,k(D) by

NVd,k(D) := #{ψ ∈ Ψd,k(D) : L(ψ, k) 6= 0}.

Moreover, note that the Galois group Gk := Gal(Q/K(ζ2k−1)) acts on Ψd,k(D) by

ψ 7→ ψσ, σ ∈ Gk.

The nonvanishing of the central values L(ψ, k) was studied in [R1, R2, MR, Y, RVY, MY, LX]
under the assumption that Gk acts transitively on Ψd,k(D). In particular, by work of Shimura
[Shi], this implies that if L(ψ, k) 6= 0 for some ψ ∈ Ψd,k(D), then NVd,k(D) = h(−D). On the other
hand, if Gk does not act transitively, then the existence of one nonvanishing central value no longer
implies that all of the central values are nonvanishing. It is therefore of interest to understand how
NVd,k(D) grows as D →∞.

Let K/Q be a number field of discriminant DK and degree n, and let Cl`(K) be the `-torsion
subgroup of the ideal class group Cl(K). Assuming the Generalized Riemann Hypothesis (GRH),
Ellenberg and Venkatesh [EV] proved the non-trivial bound

#Cl`(K)�n,ε |DK |
1
2
− 1

2`(n−1)
+ε
. (1.4)

The second author [M] used this bound to prove that

NVd,k(D)�ε D
1

2(2k−1)
−ε
. (1.5)

Very recently, Ellenberg, Pierce, and Wood [EPW] combined results in [EV] with a new sieve method
(which they call the “Chebyshev” sieve) to prove that (1.4) holds unconditionally for n ≤ 5, up to
an exceptional set of discriminants with natural density zero. In this paper, we will combine the
works [M, EPW] to prove an asymptotic formula with a power-saving error term for the number
of discriminants D for which (1.5) holds unconditionally. In particular, will prove that (1.5) holds
unconditionally for 100% of imaginary quadratic fields within certain families.

In order to state our main results, we fix the following assumptions and notation.
Fix a pair (d, k) such that sign(d) = (−1)k−1. Let Sd,k be the set of imaginary quadratic fields

K = Q(
√
−D) such that D ≡ 7 mod 8, all prime divisors of d split in K, and D is either prime or

coprime to 2k − 1. For X > 0 define the following subsets of Sd,k:
Sd,k(X) := {K ∈ Sd,k : D ≤ X}

and

SNV
d,k (X) := {K ∈ Sd,k(X) : NVd,k(D)�ε D

1
2(2k−1)

−ε}.

Remark 1.1. The conditions on D in the definition of Sd,k are technical conditions needed for the
proofs. For example, the congruence D ≡ 7 mod 8 ensures that the root number W (ψ) = 1 for all
ψ ∈ Ψd,k(D), and the splitting condition ensures that Heegner points of discriminant −D exist on
the modular curve X0(4d2).

Our main result is the following asymptotic formula with a power-saving error term.
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Theorem 1.2. Given the prime factorizations d =
∏m
i=1 pi and 2k − 1 =

∏n
i=1 q

ai
i , we have

#SNV
d,k (X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
1

6ζ(2)
X +Od,k(X

1− 1
2(2k−1) ) (1.6)

as X →∞.

Corollary 1.3. We have

#SNV
d,k (X)

#Sd,k(X)
= 1 +Od,k(X

− 1
2(2k−1) ) (1.7)

as X →∞. In particular, the bound (1.5) holds for 100% of imaginary quadratic fields K ∈ Sd,k.

An important component of the proof of Theorem 1.2 is an effective way of producing at least
one nonvanishing central value without assuming that Gk acts transitively on Ψd,k(D). We will
prove the following effective nonvanishing theorem.

Theorem 1.4. Fix a pair (d, k) such that d ≡ 1 mod 4 is squarefree and sign(d) = (−1)k−1. Let
D ≡ 7 mod 8 be such that all prime divisors of d split in K = Q(

√
−D). Then if D > 64d4(k+1)4,

there exists at least one ψ ∈ Ψd,k(D) such that L(ψ, k) 6= 0.

To prove Theorem 1.4, we will use a variation on the geometric approach in [BD] which is
based on the position of Heegner points in the cusp at infinity of a modular curve. This notion
of “quantification in the cusp” using Heegner points to prove nonvanishing theorems originated in
[MV], and has since been employed in many other instances.

2. Nonvanishing of half-integral weight theta series

Fix a pair (d, `) where d ≡ 1 mod 4 is a squarefree integer and ` ∈ Z≥0 is a nonnegative integer
such that sign(d) = (−1)`. Define the theta series

θd,`(z) := (2y)−`/2
∑

(n,d)=1

(
d

n

)
H`(n

√
2y)e(n2z), z = x+ iy ∈ H, e(z) := e2πiz

where H`(x) is the degree ` Hermite polynomial

H`(x) :=
1

(
√

8π)`

b`/2c∑
j=0

`!

j!(`− 2j)!
(−1)j(

√
8πx)`−2j .

The theta series θd,`(z) is a weight `+ 1
2 modular form for Γ0(4d2) (see []).

To prove Theorem 1.4, we will need the following effective zero-free region for θd,`(z) which is of
independent interest.

Proposition 2.1. If y = Im(z) > (`+ 2)2, then θd,`(z) 6= 0.

The following inequalities will be used in the proof of Proposition 2.1.

Lemma 2.2. For x > ` we have (
8π − 2

8π − 1

)
x` ≤ H`(x) ≤ x`.

Proof. First write

H`(x) =

b`/2c∑
j=0

`!

j!(`− 2j)!
(−1)j

x`−2j

(8π)j
= x` − `!

(`− 2)!8π
x`−2 + x`

b`/2c∑
j=2

c`,j ,
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where

c`,j :=
`!

j!(`− 2j)!

(−1)j

(8π)jx2j
.

Now, for x ≥ ` we have the bound∣∣∣∣c`,j+1

c`,j

∣∣∣∣ =
(`− 2j)(`− 2j − 1)

(j + 1)8πx2
≤ `2

8πx2
≤ 1

8π
.

Then it follows that

H`(x) ≤ x`
1− `!

(`− 2)!8πx2
+

∞∑
j=2

|c`,j |


≤ x`

1− `!

(`− 2)!8πx2
+

`!

(`− 2)!8πx2

∞∑
j=1

(
1

8π

)j
= x`

[
1− `!

(`− 2)!8πx2
+

`!

(`− 2)!8πx2

(
1

8π − 1

)]
= x`

[
1− `!

(`− 2)!8πx2

(
8π − 2

8π − 1

)]
≤ x`.

On the other hand, arguing similarly with the reverse triangle inequality, for x ≥ ` we have

H`(x) ≥ x`
1− `!

(`− 2)!8πx2
−
∞∑
j=2

|c`,j |


= x`

1− `!

(`− 2)!8πx2
− `!

(`− 2)!8πx2

∞∑
j=1

(
1

8π

)j
= x`

1− `!

(`− 2)!8πx2

∞∑
j=0

(
1

8π

)j
= x`

[
1− `!

(`− 2)!8πx2

(
8π

8π − 1

)]
= x`

[
1− `(`− 1)

(8π − 1)x2

]
≥ x`

[
1− `2

(8π − 1)x2

]
≥ x`

[
1− 1

(8π − 1)

]
=

(
8π − 2

8π − 1

)
x`.

�

Lemma 2.3. If t > (`+ 2)2 then

t− `

4π
log(πt) >

`+ 1

π
log(2) (2.1)
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and

t− `

12π
log(t) >

3`+ 2

12π
log(2). (2.2)

Proof. We first consider the inequality (2.1). Clearly, we see that

t− `

4π
log(πt) >

`+ 1

π
log(2) ⇐⇒ 4πt− ` log(16πt) > 4 log 2.

Moreover, the function g`(t) := 4πt − ` log(16πt) is strictly increasing for t > `
4π . Hence, if we

assume that t > (`+ 2)2 > `
4π , then we have

g`(t) > g`((`+ 2)2) = 4π(`+ 2)2 − ` log(16π(`+ 2)2)

= 16π + `(16π − log 16π) + `(4π`− 2 log(`+ 2))

> 4 log 2.

On the other hand, the inequality (2.2) follows from (2.1) since

t− `

12π
log(t) > t− `

4π
log(πt) >

`+ 1

π
log(2) >

3`+ 2

12π
log(2).

�

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Using the definition of H`(x) and the Kronecker symbol
(
d
n

)
, along

with the condition sign(d) = (−1)`, for n 6= 0 we have(
d

−n

)
H`(−n

√
2y) = sign(d)

(
d

n

)
(−1)`H`(n

√
2y) = (−1)2`

(
d

n

)
H`(n

√
2y) =

(
d

n

)
H`(n

√
2y).

Then the theta series can be written as

θd,`(z) = (2y)−`/2

[(
d

0

)
H`(0) + 2

∞∑
n=1

(
d

n

)
H`(n

√
2y)e(n2z)

]
. (2.3)

From here forward we assume that y > (` + 2)2. We will consider the cases d = 1 and d 6= 1
separately.

Case 1 (d = 1): If d = 1, then ∣∣∣∣(1

0

)
H`(0)

∣∣∣∣ =
`!

(8π)`/2 (`/2)!
.

Therefore, by (2.3) if
∞∑
n=1

|H`(n
√

2y)e(n2z)| < `!

2(8π)`/2 (`/2)!
,

then the reverse triangle inequality implies that θ1,`(z) 6= 0.
Consider the function

f`(t) :=
log(2t−1t`)

2π(t2 − 1)
.

Since f`(t) is strictly decreasing for t > 1, we have

y > (`+ 2)2 > f`(2) ≥ f`(n), n ≥ 2.

The inequality y > f`(n) is equivalent to

n`

e2π(n2−1)y
< 21−n, n ≥ 2. (2.4)
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We can now estimate the series as
∞∑
n=1

|H`(n
√

2y)e(n2z)| ≤ (2y)`/2
∞∑
n=1

n`

e2πn2y

= (2y)`/2
1

e2πy

∞∑
n=1

n`

e2π(n2−1)y

≤ (2y)`/2
1

e2πy

∞∑
n=1

21−n

= (2y)`/2
2

e2πy

<
1

2(8π)`/2

≤ `!

2(8π)`/2 (`/2)!
,

where the first inequality follows from the upper bound in Lemma 2.2 (since y > (`+ 2)2 we have
n
√

2y ≥ ` for all n ≥ 1), the second inequality follows from (2.4), and a short calculation shows
that the third inequality is equivalent to Lemma 2.3, inequality (2.1). This proves Case 1.

Case 2 (d 6= 1): Since d 6= 1, we have
(
d
0

)
= 0, and (2.3) can be written as

θd,`(z) = 2(2y)−`/2

[
H`(
√

2y)e(z) +
∞∑
n=2

(
d

n

)
H`(n

√
2y)e(n2z)

]
.

Therefore, if
∞∑
n=2

|H`(n
√

2y)e(n2z)| < |H`(
√

2y)e(z)|,

then the reverse triangle inequality implies that θd,`(z) 6= 0.
We have H0(

√
2y) = 1 and H1(

√
2y) =

√
2y > 1. Moreover, if ` ≥ 2 then by the lower bound in

Lemma 2.2 we have

H`(
√

2y) ≥ 8π − 2

8π − 1
(2y)`/2 > 1.

Hence it suffices to show that
∞∑
n=2

|H`(n
√

2y)e(n2z)| < |e(z)| = 1

e2πy
.

A modification of the argument in Case 1 shows that
∞∑
n=2

|H`(n
√

2y)e(n2z)| ≤ (2y)`/2
2`+1

e8πy
<

1

e2πy
,

where a short calculation shows that the second inequality in equivalent to Lemma 2.3, inequality
(2.2). This proves Case 2. �

3. Proof of Theorem 1.4

Fix a pair (d, k) where d ≡ 1 mod 4 is a squarefree integer and k ∈ Z+ is a positive integer such
that sign(d) = (−1)k−1. Consider the C∞ function Fd,k : H→ R≥0 defined by

Fd,k(z) := Im(z)k−
1
2 |θd,k−1(z)|2.



NONVANISHING OF HECKE L–SERIES AND `-TORSION IN CLASS GROUPS 7

Since θd,k−1 is a weight k − 1
2 modular form for Γ0(4d2), the function Fd,k is Γ0(4d2)-invariant.

Let D ≡ 7 mod 8 be a positive integer such that all prime divisors of d split in K = Q(
√
−D).

Then Heegner points of discriminant −D exist on the modular curve X0(4d2) := Γ0(4d2)\H. In
particular, we can fix a square root r mod 8d2 of −D mod 16d2, and for any primitive integral
ideal a ⊂ OK we can write

a = Za+ Z
(
−b+

√
−D

2

)
, a = NK/Q(a), b ∈ Z,

where b ≡ r mod 8d2 and b2 ≡ −D mod 16ad2. Then

τ
(r)
[a] =

−b+
√
−D

8ad2
∈ H

defines a Heegner point on X0(4d2) which depends only on the ideal class [a] and on r mod 8d2.
Define the Cl(K)-orbit of Heegner points

OD,4d2,r := {τ (r)
[a] : [a] ∈ Cl(K)}.

Then by [KMY, Theorem 3.5], we have the following exact formula for the average of the central
values

1

h(−D)

∑
ψ∈Ψd,k(D)

L(ψ, k) = c(k)
π√
D

∑
[a]∈Cl(K)

Fd,k(τ
(r)
[a] ), (3.1)

where c(k) := 2(8π)k−1/(k − 1)!. This formula is independent of the choice of r.
Now, let a = OK (so that NK/Q(a) = 1) and write

τ := τ
(r)
[OK ]

−b+
√
−D

8d2
.

Since Fd,k is nonnegative, we have∑
ψ∈Ψd,k(D)

L(ψ, k) ≥ πc(k)
h(−D)√

D
Fd,k(τ).

By Proposition 2.1, if Im(τ) > (k + 1)2 then Fd,k(τ) > 0. But

Im(τ) =

√
D

8d2
> (k + 1)2 ⇐⇒ D > 64d4(k + 1)4.

In particular, we have shown that if D > 64d4(k + 1)4, then∑
ψ∈Ψd,k(D)

L(ψ, k) > 0,

which implies that there exists at least one ψ ∈ Ψd,k(D) such that L(ψ, k) 6= 0. This completes the
proof of Theorem 1.4. �

4. Proofs of Theorem 1.2 and Corollary 1.3

In this section we prove Theorem 1.2 and Corollary 1.3.
For convenience, we recall the setup from the introduction. Fix a pair (d, k) such that sign(d) =

(−1)k−1. Let Sd,k be the set of imaginary quadratic fields K = Q(
√
−D) such that D ≡ 7 mod 8,

all prime divisors of d split in K, and D is either prime or coprime to 2k− 1. For X > 0 define the
following subsets of Sd,k:

Sd,k(X) := {K ∈ Sd,k : D ≤ X}
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and

SNV
d,k (X) := {K ∈ Sd,k(X) : NVd,k(D)�ε D

1
2(2k−1)

−ε}.
In addition, we will need the subset

STor
d,k (X) := {K ∈ Sd,k(X) : the bound (1.4) holds with n = 2 and ` = 2k − 1}.

We begin by giving asymptotic formulae with power-saving error terms for #Sd,k(X) and #STor
d,k (X).

Proposition 4.1. Given the prime factorizations d =
∏m
i=1 pi and 2k − 1 =

∏n
i=1 q

ai
i , we have

#Sd,k(X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+Ok

(
2d

(
n∏
i=1

qi

)
X

1
2

)
and

#STor
d,k (X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+Ok(X

1− 1
2(2k−1) )

as X →∞.

Proof. First we decompose the set Sd,k(X) into the disjoint union

Sd,k(X) = {K ∈ Sd,k(X) : (D, 2k − 1) = 1} t {K ∈ Sd,k(X) : D is prime and (D, 2k − 1) 6= 1}.
The set on the right hand side of this decomposition consists of the prime divisors p ≤ X of 2k− 1.
Therefore, if we let S1

d,k(X) denote the set on the left hand side of this decomposition, then

#Sd,k(X) = #S1
d,k(X) + t(2k − 1;X),

where t(2k − 1;X) denotes the number of prime divisors p ≤ X of 2k − 1.
We will need the following result of Ellenberg, Pierce and Wood [EPW, Proposition 8.1] which

counts quadratic number fields of bounded discriminant with prescribed local conditions.

Proposition 4.2. Let P be a finite set of primes of K. For each p ∈ P we choose a splitting type
at p and assign a corresponding density as follows:

δp :=
1

2
(1 + p−1)−1 if p splits

δp :=
1

2
(1 + p−1)−1 if p is inert

δp := (1 + p)−1 if p is ramified

Let e =
∏
p∈P p and δe =

∏
p∈P δp. Let N±2 (X;P ) be the number of real (respectively imaginary)

quadratic extensions of Q with fundamental discriminant |DK | ≤ X such that for each p ∈ P with
prescribed splitting type in K as above, then we have

N±2 (X;P ) =
δe

2ζ(2)
X +O(eX

1
2 ).

In order to use Proposition 4.2 to count S1
d,k(X), we must further decompose this set into subsets

satisfying appropriate local conditions.
Note that the condition D ≡ 7 mod 8 is equivalent to having the prime 2 split in K, and the

condition (D, 2k − 1) = 1 is equivalent to having all prime divisors of 2k − 1 unramified in K.
Now, consider the prime factorizations d =

∏m
i=1 pi (recall that d is squarefree) and 2k − 1 =∏n

i=1 q
ai
i . Let S2

d,k(X) be the subset of all K ∈ S1
d,k(X) such that the primes in the set

Pd := {2, p1, . . . , pm}
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split in K. Similarly, let S3
d,k(X) be the subset of all K ∈ S1

d,k(X) such that the primes in the set
Pd split in K and the primes in the set

Qk := {q1, . . . , qn}
ramify in K. Then by the preceding observations, we have

S1
d,k(X) = S2

d,k(X) \ S3
d,k(X),

so that

#S1
d,k(X) = #S2

d,k(X)−#S3
d,k(X).

Define the set of primes Rd,k := Pd ∪Qk. Then by Proposition 4.2, we have

#S2
d,k(X) = N−(X;Pd) = 2−m

m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+O(2dX

1
2 )

and

#S3
d,k(X) = N−(X;Rd,k) = 2−m

m∏
i=1

(
1

1 + p−1
i

) n∏
i=1

(
1

1 + qi

)
X

6ζ(2)
+O

(
2d

(
n∏
i=1

qi

)
X

1
2

)
.

It follows that

#S1
d,k(X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+O

(
2d

(
n∏
i=1

qi

)
X

1
2

)
.

Then using that

t(2k − 1;X)�k 1,

we get the asymptotic formula

#Sd,k(X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+Ok

(
2d

(
n∏
i=1

qi

)
X

1
2

)
.

Next, let S¬Tor
d,k (X) denote the subset of all K ∈ Sd,k(X) which fail to satisfy the bound (1.4)

with ` = 2k − 1, and write

#Stor
d,k(X) = #Sd,k(X)−#S¬Tor

d,k (X).

As a consequence of [EPW, Theorem 1], we have

#S¬Tor
d,k (X)� #{quadratic fields K/Q with |DK | ≤ X which fail to satisfy (1.4) with ` = 2k − 1}

� X
1− 1

2(2k−1) . (4.1)

This gives the asymptotic formula

#STor
d,k (X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+Ok(X

1− 1
2(2k−1) ).

�

Proof of Theorem 1.2. Let

cd,k := 64d4(k + 1)4

be the constant appearing in Theorem 1.4. Then for X � cd,k, we decompose the set STor
d,k (X) into

the disjoint union

STor
d,k (X) = {K ∈ STor

d,k (X) : D < cd,k} t {K ∈ STor
d,k (X) : D ≥ cd,k} =: STor

d,k (cd,k) t STor,1
d,k (X).
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Lemma 4.3. We have STor,1
d,k (X) ⊂ SNV

d,k (X).

Proof. Let K ∈ STor,1
d,k (X) and define the cyclotomic extension N := K(ζ2k−1) where ζ2k−1 is a

primitive (2k− 1)-th root of unity. Recall that the Galois group Gk := Gal(Q/N) acts on Ψd,k(D)
by

ψ 7→ ψσ := σ ◦ ψ, σ ∈ Gk.

For a fixed ψ0 ∈ Ψd,k(D), we denote the Galois orbit of ψ0 by

Oψ0 = {ψσ0 : σ ∈ Gk}.

Now, since D ≥ cd,k, by Theorem 1.4 there exists a ψ0 ∈ Ψd,k(D) such that L(ψ0, k) 6= 0. Also,
using work of Shimura [Shi], one can show that for any σ ∈ Gk, we have

L(ψσ0 , k) 6= 0 if and only if L(ψ0, k) 6= 0.

Hence it follows that

NVd,k(D) ≥ #Oψ0 .

On the other hand, by [M, Proposition 1.1] we have

#Oψ0 =
h(−D)

#Cl2k−1(K)
.

Therefore

NVd,k(D) ≥ h(−D)

#Cl2k−1(K)
.

By Siegel’s theorem, we have

h(−D)�ε D
1/2−ε.

Then since K satisfies the bound (1.4) with ` = 2k − 1, we get

NVd,k(D)�ε D
1

2(2k−1)
−ε
.

It follows that K ∈ SNV
d,k (X). �

Using Lemma 4.3, we get the decomposition

SNV
d,k (X) = STor,1

d,k (X) t
(
SNV
d,k (X) \ STor,1

d,k (X)
)
.

Now, since

#STor
d,k (cd,k)�d,k 1,

by Proposition 4.1 we get

#STor,1
d,k (X) = #STor

d,k (X)−#STor
d,k (cd,k)

= 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+Od,k(X

1− 1
2(2k−1) ).

Also, since

SNV
d,k (X) \ STor,1

d,k (X) ⊂ S¬Tor
d,k (X),

the bound (4.1) gives

#
(
SNV
d,k (X) \ STor,1

d,k (X)
)
≤ #S¬Tor

d,k (X)� X
1− 1

2(2k−1) .
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Hence

#SNV
d,k (X) = 2−m

(
1−

n∏
i=1

(
1

1 + qi

)) m∏
i=1

(
1

1 + p−1
i

)
X

6ζ(2)
+Od,k(X

1− 1
2(2k−1) ).

This proves Theorem 1.2.
Finally, by combining the preceding asymptotic formula with Proposition 4.1, we get

#SNV
d,k (X)

#Sd,k(X)
= 1 +Od,k(X

− 1
2(2k−1) ).

This proves Corollary 1.3. �
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