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1 Introduction
In this paper we classify the irreducible unitarizable representations of B5 of dimension less than 5.
This result expands on known results which have important applications in topological quantum
computing and in representation theory. An application of unitary representations was given in
[1] or see a survey paper by Rowell and Wang [2] for more information. Local unitary braid group
representations can be used to construct a universal quantum computer on a collection of anyons.
Such a computer would avoid decoherence and have a much lesser -if not completely eliminated-
need for quantum error correcting codes.

Several important results already have been proven about the representations of the braid
group. In general the representations of Bn have been classified for dimensions less than n, in
paper a paper by Formanek [3] and then completed for dimension equal to n in [4]. Tuba and
Wenzl have classified the representations of B3 up to dimension five and give a condition which
describes when the representation is unitarizable in [5] and [6]. We use the classifications and
matrix forms of the representations of B5 originally presented in [4] by E. Formanek, to classify
which of the representations of B5 are unitarizable.

2 Background
A representation φ is defined as a homomorphism from a group G into GLn(K), where K is some
field and n is called the dimension of the representation. An irreducible representation φ is one such
that the vector space that the representation acts on has no non-trivial invariant subspaces. More
specifically, given a representation ϕ : G → GLn(C) if there does not exist a W ⊂ V such that
for all g ∈ G, ϕ(g)W ⊂ V . In this paper we will be working with the representations of the braid
group on five strands B5 over the field of complex numbers which are at most five dimensional.

The braid group has several realizations; one is the motion of a collection of points in a disk
over time, but it is perhaps easier to visualize as braids of strands of string where the operation is
concatenation and topologically equivalent strings are identified. We give an example of a pair of
equivalent braids of B3 below which demonstrate the braid relation.

=

Symbolically the braid group on n-strands is given by the following:

Bn
.
= 〈σ1, σ2, · · ·σn−1 | σi−1σiσi−1 = σiσi−1σi and σiσj = σjσi if |i− j| ≥ 2〉

The representation of the braid group is given by mapping each generator σi to some matrix.
Together these matrices should satisfy the relationships which generate the braid group. Next we
will give an introduction to some of the representations of Bn

A standard example of such a representation exists called the Burau representation. It is given
by the map βn : Bn → GLn(C) where

β̃n(σi) =


Ii−1 0 0

0
1− t t
1 0

0

0 0 In−i−1
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The Burau representation is not irreducible; it always has a one dimensional invariant subspace
given by W = span(1, . . . , 1)T . However the Burau representation is always the directed sum of
the reduced Burau representation and W , the reduced Burau representation, denoted β, is given
by the following mapping of the generators of Bn:

βn(σ1) =

 −t 1
0 1

0
0

0 0 In−3

 , βn(σi) =

Ii−2 0 0 0 0
0
0
0

1 0 0
t −t 1
0 0 1

0
0
0

0 0 0 0 In−i−2

 , βn(σn−1) =
 In−3 0 0

0
0

0 1
t −t

 .
The reduced Burau representation is irreducible if and only if t is not a root of f(z) = 1+ z+ z2+
· · ·+ zn.

Formanek also uses a special form of the reduced Burau representation which is an extension
of the reduced Burau representation on Bn−1. Let z be a root of f(z) = 1 + z + z2 + · · · + zn,
Then β̂n : Bn → GLn−2(C) is the irreducible representation defined by: β̂n(σi) = βn−2(σi) for
1 ≤ i ≤ n− 2 and β̂n(σn−1) = I −PQ, where P is a column vector of size n− 2 of all zeros except
the last entry which is z and

Q = ((−1)n−2z)(1,−(z + 1), (1 + z + z2), . . . , (−1)n−2(1 + z + z2 + . . .+ zn−2).

A full motivation of this definition and proof that this representation is irreducible can be found in
a paper by Formanek [3]. Our paper will work with the matrix form directly and will omit these
details.

Another common representation is the standard representation introduced by Inna Sysoeva in
[7] where she also proved that all n-dimensional irreducible representations of Bn for n ≥ 9 are
tensors of the standard representation with one dimensional representation χ(z). Define the one-
dimensional representation χ(z) : B5 → C by χ(z)(σi) = z. Any one dimensional representation
takes this form. The standard representation s(y) : Bn → (C)n is given by:

s(t)(σi) =


Ii−1

0 t
1 0

In−i−1


The last representation used in the classification of all representations of B5 was developed

using Hecke algebras by V.F.R. Jones in [8]. We will denote this representation µ(t) : B5 →
GL5(C), where t ∈ C∗. This paper will not detail the process of how the representations were
constructed using Hecke algebras and will work only directly with the matrices, but in essence µ(t)
is a representation of B6 which is restricted to the first four generators of B6 to give a representation
of B5. The representation µ is irreducible if t is not a root of f(t) = (1 + t + t2) ∗ (t2 + 1). If
t is a root of f(t) = t2 + 1 then µ(t) is the tensor product of χ(1), where χ(z) is defined by
χ(z)(σi) = z, and an irreducible representation µ̂(t) : B5 → GL4(C). In the case where t is a
root of f(t) = (1 + t + t2) µ(t) is the tensor product of a one dimension representation and a
representation which is equivalent to the reduced Burau representation. The source of the exact
calculations is in [4].

Now we have all of the representations necessary to classify the representations of B5 up to
dimension five, using the results of the papers [3] and [4]. There are no two dimensional represen-
tations of B5. All representations of B5 which are three dimensional are of the Burau type.

A representation ϕ : Bn → GLr(C) is of Burau type if r ≥ 2 and it is equivalent to χ(y) ⊗
βn(z) : Bn → GLn−1(C) or χ(y) ⊗ β̂n(z) : Bn → GLn−2(C). In dimension four, any irreducible
representation ϕ is of Burau Type or ϕ is equivalent to χ(y) ⊗ µ̂(z) : B5 → GL4(C). Similarly
in five dimensions the representation is equivalent to χ(y) ⊗ µ(z) : B5 → GL4(C) where µ(z)
is the irreducible Hecke representation described above. This paper focuses on classifying which
of the above representations of B5 are unitarizable, so it will now present some background on
unitarizable representations.

A representation (ϕ, V ) is said to be unitarizable if the vector space V can be equipped with a
Hermitian inner product such that for all g ∈ G, 〈ϕ(g)v|ϕ(g)w〉 = 〈v|w〉. Let 〈v|w〉 be the standard
inner product on Cn. Define 〈v|w〉A = 〈Av|w〉 on Cn. The following two lemmas are well-known
results in linear algebra.
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Lemma 2.1: Define the adjoint operator * with respect to 〈·|·〉A as U∗ = A−1U ′A where ′ is
the conjugate transpose. Then we have that 〈Uv|Uw〉A = 〈v|w〉A for all u, v ∈ Cn if and only if
UU∗ = I.

Lemma 2.2: Define 〈v|w〉A = 〈Av|w〉 for some positive Hermitian definite matrix A. Let
〈v|w〉∗ be some Hermitian inner product on Cn Then there exists some A such that 〈v|w〉∗ =
〈v|w〉A = 〈Av|w〉. This matrix A has values aij = 〈ei|ej〉1 where ei and ej are elements of the
standard basis of Cn.

3 Main Results
First this paper presents a lemma which gives a helpful condition for a representation to be unita-
rizable.

Lemma 3.1: Let (ϕ, V ) be a representation over a complex vector space. Then assume that
there is a ϕX such that ϕX(b) = X−1ϕ(b)X. If ϕX is unitary with respect to some Hermitian
inner product 〈u|v〉∗ then ϕ is unitarizable.

Proof : By Lemma 2.2, we know that there is an A such that 〈u|v〉∗ = 〈u|v〉A, consider the ad-
joint operator with respect to this inner product *. By Lemma 2.1 we know that ϕ(b)ϕ(b)∗ = I for
all b ∈ G. Along with reordering this givesA(ϕ(b)′)A−1 = ϕx(b)Next consider ((X ′)−1A)−1(ϕ(b)′)((X ′)−1A) =
A−1X ′(X ′)−1ϕx(b)

′X ′(X ′)−1A = A−1(ϕ(b)′)A = ϕx(b)
−1. SoX((X ′)−1A)−1(ϕ(b)′)((X ′)−1A)X−1 =

Xϕx(b)
−1X−1 = ϕ(b)−1. Which tells us that ((X ′)−1AX−1)−1 ϕ(b)′((X ′)−1AX−1)ϕ(b) = I.

Thus for the adjoint * defined with respect to 〈v|w〉(X′)−1AX−1 , we have ϕ(b)∗ϕ(b) = I. By
Lemma 2.1 we know that ϕ is unitary with respect to 〈v|w〉(X′)−1AX−1 . Thus ϕ is unitarizable as
required.

Theorem 3.1 The reduced Burau representation is unitarizable when Jn−1 = XX† for some
X.

Proof : This follows from Lemma 3.1 and the following construction from Squier in [9]. Define
Pn−1 and Jn−1 as below:

Pn−1 =


1 0 . . . 0
0 s
...

. . .
...

0 . . . sn−1

 , Jn−1 =


s+ s−1 −1 . . . 0

−1 s+ s−1
. . .

...
...

. . . . . . −1
0 . . . −1 s+ s−1


By Theorem 2.3 in [1] we have that β(z)S = P−1n−1β(z)Pn−1 is unitary with respect to Jn−1, this
implies by Lemma 3.1 that the reduced Burau representation is unitary if the Jn1

matrix is positive
definite. In other words that Jn1 = XX† for some X.

Theorem 3.2: The standard representation s(t) : B5 → C5 of B5 is unitary if and only if t is
on the unit circle.

Proof: If t is on the unit circle then SiS
†
i = I so the matrices mapped to by the generators

are unitary with respect to the standard inner product. Now if we assume that t is not on the unit
circle we can prove that the standard representation is not unitary by using the following system
of equations procedure.

Using Lemma 2.2 we have UU∗ = I which is equivalent to U†A − AU−1 = 0. Then with an
appropriate symbolic equation solver we can define an a matrix of variables A and solve a system
of equations for them. The exact MatLab code appears in the appendix, we provide some pseudo
code below. Here φ(σi) = Bi.

A = symbolicMatrix(n)
for i = 1:4
Ei = ConjugateTranspose(Bi)*A - A*inverse(Bi) == 0
Vi = eqnToMatrix(Ei)
end
V = [ V1; V2; V3; V4 ]
solve(V) %%note we do this by hand as auto systems failed

Using this and some rather tedious calculations we have proven the following theorems.
Theorem 3.4: The Hecke representations µ(t) : B5 → C5 where t is not a zero of f(t) =

(t2+1)(t2+ t+1) and the specialization of the reduced Burau representation β̂ : B5 → C3 is never
unitarizable.
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Proof: My research partner Etude O’Neel-Judy has included a proof of this in his paper.
Theorem 3.5: The specialization of the Hecke representation µ̂ : B5 → C4 is never unitariz-

able.
Proof : Both of these theorems are proved using calculations on the systems of equations given

by the pseudo-code above. First note that if t is a root of t2 + t + 1 then µ̂ is equivalent to the
reduced Burau representation as was shown in [3]. It remains to check t = ±i we will show the
case t = i.

Upon calculation row 28 and 31 of the system give a2,3 = a3,4 and a1,3 = a2,5 respectively. Row
2 gives −a1,1−a1,3−a2,4 = 0, and row 8 gives −a1,1+ ia1,3−a2,4 = 0, which implies (1+ i)a1,3 = 0
so a1,3 = 0, a1,1 = 0, and a2,4 = 0.Then row 12 gives a3,3 = ia1,4 and row 15 gives a3,3 = a1,4 so
a1,4 = 0 and a3,3 = 0. Row 23 is a1,2 + a1,3 + a2,4 = 0 so a1,2 = 0. Row 17 gives −ia1,5 − a2,3 = 0
and Row 20 gives −a1,5 − a3,4 = 0 so adding rows gives (1 − i)a1,5 = 0. Thus A has an all zero
row and is not invertible, which is a contradiction.

At this point in the paper we have shown which of the basic representations of B5 are unitariz-
able. Thus to finish the classification we need to examine the way the tensor product affects the
unitarizablity of the representation.

Theorem 3.5: Given a representation ϕ of Bn and the one dimensional representation χ(z) of
Bn, the representation ϕ⊗χ(z) is unitarizable if and only if there exists a Hermitian inner product
〈·|·〉A such that for all σi, 〈ϕ(σi)u|ϕ(σi)v〉A = c〈u|v〉 where c is some positive real with |z| = 1√

c
.

Proof : If there exists an A such that 〈ϕ(g)v|ϕ(g)w〉A = c〈v|w〉A for all v, w ∈ Cn for some
positive real c, then pick your favorite z such that |z| = 1√

c
. Now 〈χ ⊗ ϕ(g)v|χ ⊗ ϕ(g)w〉A =

〈z ∗ ϕ(g)v|z ∗ ϕ(g)w〉A = |z|2(c〈v|w〉A) = 〈v|w〉A. So assume that χ(z)⊗ ϕ is unitarizable. On the
other hand by similar computation c = 1

|z|2 .
Main Theorem: The following list gives every irreducible unitary representation of B5 up to

dimension five.
d = 1: χ(z) where |z| = 1.
d = 2: No unitary irreducible representations.
d = 3: No unitary irreducible representations.
d = 4: The Burau type representation χ(z) ⊗ β(t) when |z| = 1 and the previously described

Jn matrix is positive definite.
d = 5: The standard representation χ(z)⊗ s(t) : B5 → C5 when |t| = 1 and |z| = 1.
Proof: As we have previously established conditions where each irreducible representation is

unitary before tensor product we need to check the tensor product’s effect. We do this using a
system of equations derived from the unitary condition and the previous theorem. Namely we
build a system as before but with |z|2U†A−1 −AU−1 = 0.

This paper presents the calculations for the tensor product with the standard, Burau, and
specialized Hecke µ̂. My research partner Etude ONeel-Judy, presents them for the Hecke µ and
specialized Burau β̂ in his paper. Note that in the following calculation the row refers to the row
of the matrix given by our matlab code and we set c = |z|2. Also note that if c = 1 then our
condition reduces to the case where the representation is unitary so in the following calculations
we assume c 6= 1.

For the Burau representation β(t): equation 17 gives (c − 1)a1,1 = 0, equation 19 gives (c −
1)a1,3 = 0, equation 20 gives (c − 1)a1,4 = 0, equation 34 gives (c − 1)a1,2 = 0, equation 37 gives
(c− 1)a1,5 = 0. Then if c 6= 0 the whole first row is zero which contradicts that A is invertible.

For the standard representation s(t): equation 51 gives (c − 1)a1,1 = 0, equation 52 gives
(c − 1)a1,2 = 0, equation 78 gives (c − 1)a1,3 = 0, equation 29 gives (c − 1)a1,4 = 0, equation 30
gives (c−1)a1,5 = 0. Then if c 6= 0 the whole first row is zero which contradicts that A is invertible.
So we only have the unitary case.

For the specialized Hecke representation, note that we just present the case t = i (t = −i is
similar). Equation 34 gives that (c − 1)a1,1 = 0, equation 36 gives (c − 1)a1,3 = 0, equation 31
gives (c−1)a5,5, equation 33 gives (c−1)a5,3. We split cases c = i or c 6= i. Then if c = i, equation
5 implies a1,4 = 0, equation 19 implies that a1,2 = 0, equation 6 implies that a1,5 = 0. So this
implies that A is not invertible, a contradiction. If c 6= i, then equation 35 implies that a1,2 = 0,
equation 37 implies that a1,4 = 0, and equation 22 implies a1,5 = 0. So again A would not be
invertible, a contradiction. Thus this reduces to the case where specialized Hecke representation is
unitarizable.
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4 Conclusion
Previous results in the literature classify irreducible representations of Bn up to dimension n,
we have extended these to a partial result classifying the unitary representations of Bn up to
dimension n. The classification of the unitary conditions of the Burau representation had already
been performed. In addition to this, the standard representation has clear unitarizablity conditions.
We proved conditions on the remaining irreducible representations of B5 of low dimension and none
are unitary. This is an important step of the classification as for Bn with n ≥ 9 there are only the
Burau and standard. Thus the work presented in this paper leaves only the classification of the
unitary conditions of Hecke representations for Bn in n = 6, 7, 8 and the unitary representations
of B4. It is likely that the required classification of B4 would likely follow from mapping known
representations of B3 into B4.
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Appendix
Here is the exact code used to get the system of equations for the entries of A. It is altered from
code provided by my research partner Etude Judy-ONeel.

1 f unc t i on M = hecke_matrices (H_1,H_2,H_3,H_4)
2 [ n , ~ ] = s i z e (H_1) ;
3 syms t
4 syms c
5 X = sym( ’ x ’ , n ) ;
6

7 %Need empty vec to r s to f i l l with e n t r i e s o f Yi
8 V1 = [ ] ;
9 V2 = [ ] ;

10 V3 = [ ] ;
11 V4 = [ ] ;
12 %var i ab l e vec to r
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13 x = [ ] ;
14 %X has to s a t i s f y the f o l l ow i ng equat ion matr i ce s
15 %note to t e s t without the t enso r product o f the constant f a c t o r remove

c
16 Y1 = X∗ inv (H_1) − c∗H_1’∗X == 0 ;
17 Y2 = X∗ inv (H_2) − c∗H_2’∗X == 0 ;
18 Y3 = X∗ inv (H_3) − c∗H_3’∗X == 0 ;
19 Y4 = X∗ inv (H_4) − c∗H_4’∗X == 0 ;
20 %This puts the above equat ion matr i ce s in vec to r form
21 f o r i= 1 : n
22 f o r j = 1 : n
23 V1 = [V1 Y1( i , j ) ] ;
24 V2 = [V2 Y2( i , j ) ] ;
25 V3 = [V3 Y3( i , j ) ] ;
26 V4 = [V4 Y4( i , j ) ] ;
27 x = [ x X( i , j ) ] ;
28 end
29 end
30 %master equat ion vec to r
31 V = [V1 V2 V3 V4 ] ;
32 %convert a l l equat ions from equat ion matr i ce s Yi in to a s i n g l e

c o e f f i c i e n t
33 %matrix
34 M = equationsToMatrix (V, x ) ;
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