On Classification of the Unitarizability of Irreducible Representations of B_{5}

Étude Aro O'Neel-Judy
Northern Arizona University

$$
\text { July 17, } 2017
$$

I got 99 problems...

1. Topological quantum computation is based on the storage and manipulation of information in the representation spaces of B_{n}.

got 99 problems...

1. Topological quantum computation is based on the storage and manipulation of information in the representation spaces of B_{n}.

The Problem
I wanted to classify representations of B_{5} with dimension greater than 5 . This means being able to write down the form of the matrices for this representation.

got 99 problems...

1. Topological quantum computation is based on the storage and manipulation of information in the representation spaces of B_{n}.

The Problem
I wanted to classify representations of B_{5} with dimension greater than 5 . This means being able to write down the form of the matrices for this representation.

The Strategy
I needed to find a special basis in which all the matrices of this representation acquire a predetermined form.

PLOT TWIST!

All of my approaches to the problem from the previous slide failed!

PLOT TWIST!

All of my approaches to the problem from the previous slide failed!

1. With two weeks left, Small Paul and I joined forces!

PLOT TWIST!

All of my approaches to the problem from the previous slide failed!

1. With two weeks left, Small Paul and I joined forces!
2. We successfully classified which representations of B_{5} of dimension $d \leq 5$ are unitarizable!

Unitarizability

Unitarizability

1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.

Unitarizability

1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.
2. A qubit may be represented as a vector in a complex Hilbert space.

Unitarizability

1. In order to build a functioning quantum computer, we need to be able to manipulate quantum information, the fundamental unit of which is the qubit.
2. A qubit may be represented as a vector in a complex Hilbert space.
3. We can manipulate this quantum information by applying a unitary transformation (matrix).

What Words Mean

Definition (Braid Group)

The braid group on n-strands is given by

$$
\begin{aligned}
B_{n}=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \forall i \in\{1, \ldots n-1\} \\
\sigma_{i} \sigma_{j} & \left.=\sigma_{i} \sigma_{j} \quad \forall|i-j| \neq 1\right\rangle
\end{aligned}
$$

What Words Mean

Definition (Braid Group)

The braid group on n-strands is given by

$$
\begin{aligned}
B_{n}=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} \quad \forall i \in\{1, \ldots n-1\} \\
\sigma_{i} \sigma_{j} & \left.=\sigma_{i} \sigma_{j} \quad \forall|i-j| \neq 1\right\rangle
\end{aligned}
$$

Definition (Representation)

A representation of a group G is a pair (ρ, V), where V is a d dimensional vector space over \mathbb{C} and ρ is a group homomorphism from G to the collection of $d \times d$ invertible matrices over \mathbb{C}.

What Even More Words Mean

Definition (Irreducible)
A representation is irreducible if V contains no proper, non-trivial subspaces W such that $\rho(g) w \in W$ for all $g \in G, w \in W$.

What Even More Words Mean

Definition (Irreducible)

A representation is irreducible if V contains no proper, non-trivial subspaces W such that $\rho(g) w \in W$ for all $g \in G, w \in W$.

Definition (Unitarizable)
A representation ρ is unitarizable provided there exists a Hermitian inner product $\langle\cdot \mid \cdot\rangle_{A}$ such that $\langle\rho(g) v \mid \rho(g) w\rangle_{A}=\langle v \mid w\rangle_{A}$ for all $g \in G$ and for all $v, w \in V$.

What Even More Words Mean

Definition (Irreducible)

A representation is irreducible if V contains no proper, non-trivial subspaces W such that $\rho(g) w \in W$ for all $g \in G, w \in W$.

Definition (Unitarizable)
A representation ρ is unitarizable provided there exists a Hermitian inner product $\langle\cdot \mid \cdot\rangle_{A}$ such that $\langle\rho(g) v \mid \rho(g) w\rangle_{A}=\langle v \mid w\rangle_{A}$ for all $g \in G$ and for all $v, w \in V$.

Note:

What Even More Words Mean

Definition (Irreducible)

A representation is irreducible if V contains no proper, non-trivial subspaces W such that $\rho(g) w \in W$ for all $g \in G, w \in W$.

Definition (Unitarizable)
A representation ρ is unitarizable provided there exists a Hermitian inner product $\langle\cdot \mid \cdot\rangle_{A}$ such that $\langle\rho(g) v \mid \rho(g) w\rangle_{A}=\langle v \mid w\rangle_{A}$ for all $g \in G$ and for all $v, w \in V$.

Note: The arbitrary inner product $\langle\cdot \mid \cdot\rangle_{A}$ may be related to the standard inner product via $\langle v \mid w\rangle_{A}=\langle A v \mid w\rangle$ for some matrix A.

Quick Example

What does it mean for a matrix to be unitary?

Quick Example

What does it mean for a matrix to be unitary?

As an example, set $A=I$, then we may recover the usual notion of the length of a vector v from the standard inner product $\langle v \mid v\rangle_{A}=\langle A v \mid v\rangle=\langle I v \mid v\rangle=\langle v \mid v\rangle$.

Quick Example

What does it mean for a matrix to be unitary?

As an example, set $A=I$, then we may recover the usual notion of the length of a vector v from the standard inner product $\langle v \mid v\rangle_{A}=\langle A v \mid v\rangle=\langle I v \mid v\rangle=\langle v \mid v\rangle$.

Under the standard inner product, a unitary matrix $\rho(g)$ has the property that $\langle\rho(g) v \mid \rho(g) v\rangle=\langle v \mid v\rangle$.

Quick Example

What does it mean for a matrix to be unitary?

As an example, set $A=I$, then we may recover the usual notion of the length of a vector v from the standard inner product $\langle v \mid v\rangle_{A}=\langle A v \mid v\rangle=\langle I v \mid v\rangle=\langle v \mid v\rangle$.

Under the standard inner product, a unitary matrix $\rho(g)$ has the property that $\langle\rho(g) v \mid \rho(g) v\rangle=\langle v \mid v\rangle$.

In other words, applying a unitary matrix to a vector does not change the vector's length!

Useful Tools

Definition (Adjoint)

Let A be a matrix, then we define the adjoint of $\rho(g)$ with respect to A via $\rho(g)^{*}=A^{-1} \rho(g)^{\dagger} A$, where \dagger denotes complex conjugate transpose.

Useful Tools

Definition (Adjoint)

Let A be a matrix, then we define the adjoint of $\rho(g)$ with respect to A via $\rho(g)^{*}=A^{-1} \rho(g)^{\dagger} A$, where \dagger denotes complex conjugate transpose.

Definition (Unitarizable Matrix)
A matrix $\rho(g)$ is unitarizable provided there exists a matrix A such that $\rho(g) \rho(g)^{*}=\rho(g) A^{-1} \rho(g)^{\dagger} A=I$.

The Classification Problem

Formanek et al. showed that all irreducible representations of B_{5} of dimension $d \leq 5$ take the following form:

The Classification Problem

Formanek et al. showed that all irreducible representations of B_{5} of dimension $d \leq 5$ take the following form:

$$
\chi(c) \otimes \rho(t)
$$

Where $\chi(c)$ is a one-dimensional representation defined by $\chi(c)\left(\sigma_{i}\right)=c, \rho(t)$ is one of four main representation types, and t and c are parameters.

The Classification Problem

Formanek et al. showed that all irreducible representations of B_{5} of dimension $d \leq 5$ take the following form:

$$
\chi(c) \otimes \rho(t)
$$

Where $\chi(c)$ is a one-dimensional representation defined by $\chi(c)\left(\sigma_{i}\right)=c, \rho(t)$ is one of four main representation types, and t and c are parameters.

Classification
To classify the unitarizability of the representations of B_{5}, we need to check the unitarizability of $\tilde{\rho}=\chi(c) \otimes \rho(t)$ given $\rho(t)$.

The Process

Consider the representation $\tilde{\rho}=\chi(c) \otimes \rho(t)$ of B_{5}. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

The Process

Consider the representation $\tilde{\rho}=\chi(c) \otimes \rho(t)$ of B_{5}. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

$$
\begin{aligned}
I & =\tilde{\rho}\left(\sigma_{i}\right)\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{*} \\
& =\tilde{\rho}\left(\sigma_{i}\right) A^{-1}\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger} A
\end{aligned}
$$

The Process

Consider the representation $\tilde{\rho}=\chi(c) \otimes \rho(t)$ of B_{5}. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

$$
\begin{aligned}
I & =\tilde{\rho}\left(\sigma_{i}\right)\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{*} \\
& =\tilde{\rho}\left(\sigma_{i}\right) A^{-1}\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger} A
\end{aligned}
$$

After further manipulation, we see that the above is equivalent to

The Process

Consider the representation $\tilde{\rho}=\chi(c) \otimes \rho(t)$ of B_{5}. It follows from the definition that $\tilde{\rho}$ is unitarizable if and only if there exists an A such that,

$$
\begin{aligned}
I & =\tilde{\rho}\left(\sigma_{i}\right)\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{*} \\
& =\tilde{\rho}\left(\sigma_{i}\right) A^{-1}\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger} A
\end{aligned}
$$

After further manipulation, we see that the above is equivalent to

$$
\begin{equation*}
0=A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \tag{1}
\end{equation*}
$$

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

$$
0=A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
$$

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

$$
\begin{aligned}
0 & =A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =A(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)-\left((\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)^{\dagger}\right)^{-1} A
\end{aligned}
$$

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

$$
\begin{aligned}
0 & =A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =A(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)-\left((\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)^{\dagger}\right)^{-1} A \\
& =A\left(c \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(c \rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
\end{aligned}
$$

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

$$
\begin{aligned}
0 & =A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =A(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)-\left((\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)^{\dagger}\right)^{-1} A \\
& =A\left(c \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(c \rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =c\left(A \rho(t)\left(\sigma_{i}\right)\right)-\frac{1}{\bar{c}}\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
\end{aligned}
$$

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

$$
\begin{aligned}
0 & =A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =A(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)-\left((\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)^{\dagger}\right)^{-1} A \\
& =A\left(c \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(c \rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =c\left(A \rho(t)\left(\sigma_{i}\right)\right)-\frac{1}{\bar{c}}\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =c \bar{c}\left(A \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
\end{aligned}
$$

We see then that if $c \bar{c}=1$, i.e. if c is on the unit circle, then $\dot{\rho}$ is unitarizable exactly when $\rho(t)$ is.

More About Process

We may now expand using $\tilde{\rho}\left(\sigma_{i}\right)=(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)$, which yields

$$
\begin{aligned}
0 & =A \tilde{\rho}\left(\sigma_{i}\right)-\left(\left(\tilde{\rho}\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =A(\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)-\left((\chi(c) \otimes \rho(t))\left(\sigma_{i}\right)^{\dagger}\right)^{-1} A \\
& =A\left(c \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(c \rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =c\left(A \rho(t)\left(\sigma_{i}\right)\right)-\frac{1}{\bar{c}}\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A \\
& =c \bar{c}\left(A \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
\end{aligned}
$$

We see then that if $c \bar{c}=1$, i.e. if c is on the unit circle, then $\dot{\rho}$ is unitarizable exactly when $\rho(t)$ is.
An interesting question is whether there exists some c and some non-unitarizable representation $\rho(t)$ such that $\tilde{\rho}$ is unitarizable.

Results

1. Given $\rho(t)$, I set up some MatLab code which converts the equation matrix

$$
0=c \bar{c}\left(A \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
$$

into a master coefficient matrix composed of the coefficient matrices for each σ_{i}.

Results

1. Given $\rho(t)$, I set up some MatLab code which converts the equation matrix

$$
0=c \bar{c}\left(A \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
$$

into a master coefficient matrix composed of the coefficient matrices for each σ_{i}.
2. I then solved the coefficient matrices for the Hecke $\rho(t)=H(t)$, and reduced-extended Burau $\rho(t)=\hat{\beta}(t)$ representations.

Results

1. Given $\rho(t)$, I set up some MatLab code which converts the equation matrix

$$
0=c \bar{c}\left(A \rho(t)\left(\sigma_{i}\right)\right)-\left(\left(\rho(t)\left(\sigma_{i}\right)\right)^{\dagger}\right)^{-1} A
$$

into a master coefficient matrix composed of the coefficient matrices for each σ_{i}.
2. I then solved the coefficient matrices for the Hecke $\rho(t)=H(t)$, and reduced-extended Burau $\rho(t)=\hat{\beta}(t)$ representations.
3. I found that for both H and $\hat{\beta}$ there was no c that satisfied the above equation for all σ_{i}.
4. Collectively, Small Paul and I have fully classified which representations of B_{5} of dimension $d \leq 5$ are unitarizable!

Next Steps

1. Now that we are done with the representations of B_{5}, Paul and I have ambitions to classify representations of B_{n} for $n \neq 5$.

Next Steps

1. Now that we are done with the representations of B_{5}, Paul and I have ambitions to classify representations of B_{n} for $n \neq 5$.
2. In this process, if we do not find any non-unitarizable representations $\rho(t)$ that can be unitarized with the right $\chi(c)$ then we will have shown by exhaustion that $\tilde{\rho}$ is unitarizable if and only if c is on the unit circle and $\rho(t)$ is unitarizable.

Thanks for listening!

Special thanks to:
NSF - Funding
Texas A\& M Mathematics Dept. REU Program - Gracious Host
Dr. Julia Plavnik - Research Mentor
Paul Gustafson \& Ola Sobieska - Graduate Assistants
Paul Vienhage - Group Partner

