Solving Trinomials over \mathbb{Q}_{p}

Elliott Fairchild

July 27, 2021

Solving Trinomials

Problem

Let $f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z} /\left(p^{k}\right)$ are there, and where do they lie?

Solving Trinomials

Problem

Let $f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z} /\left(p^{k}\right)$ are there, and where do they lie?

* Can information about roots of f over $\mathbb{Z} /(p)$ say anything about roots of f over $\mathbb{Z} /\left(p^{k}\right)$?

Solving Trinomials

Problem

Let $f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z} /\left(p^{k}\right)$ are there, and where do they lie?

* Can information about roots of f over $\mathbb{Z} /(p)$ say anything about roots of f over $\mathbb{Z} /\left(p^{k}\right)$?
* If the root is simple, then Hensel's Lemma gives us the desired result.

Solving Trinomials

Problem

Let $f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z} /\left(p^{k}\right)$ are there, and where do they lie?

* Can information about roots of f over $\mathbb{Z} /(p)$ say anything about roots of f over $\mathbb{Z} /\left(p^{k}\right)$?
* If the root is simple, then Hensel's Lemma gives us the desired result.
* Degenerate roots are more tricky...

Solving Trinomials

Problem

Let $f(x)=c_{1} x^{a_{1}}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z} /\left(p^{k}\right)$ are there, and where do they lie?

* Can information about roots of f over $\mathbb{Z} /(p)$ say anything about roots of f over $\mathbb{Z} /\left(p^{k}\right)$?
* If the root is simple, then Hensel's Lemma gives us the desired result.
* Degenerate roots are more tricky...

Example

Let $f(x)=x^{2}$. Then f has a single degenerate root at 0 over $\mathbb{Z} /(p)$, but over $\mathbb{Z} /\left(p^{2}\right)$, the roots are given by $(0, p, \ldots,(p-1) p)$.

Applications to Coding Theory

* Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q_{1}, \ldots, q_{ρ}) of elements of $\mathbb{Z} /\left(p^{k}\right)$.

Applications to Coding Theory

* Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple $\left(q_{1}, \ldots, q_{\rho}\right)$ of elements of $\mathbb{Z} /\left(p^{k}\right)$.
* We can also represent K with an element F of $\left(\mathbb{Z} /\left(p^{k}\right)\right)[x]_{<\rho}$ by letting q_{i} equal the coefficient of x^{i-1}.

Applications to Coding Theory

* Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple $\left(q_{1}, \ldots, q_{\rho}\right)$ of elements of $\mathbb{Z} /\left(p^{k}\right)$.
* We can also represent K with an element F of $\left(\mathbb{Z} /\left(p^{k}\right)\right)[x]_{<\rho}$ by letting q_{i} equal the coefficient of x^{i-1}.
* Applications in error-correction involve computing roots of a polynomial $G \in\left(\mathbb{Z} /\left(p^{k}\right)\right)[x][y]$ over $\left(\mathbb{Z} /\left(p^{k}\right)\right)[x]$.

Passing to \mathbb{Q}_{p}

We can efficiently encode the roots of f over $\mathbb{Z} /\left(p^{k}\right)$ for successively larger k by finding the roots of f over \mathbb{Q}_{p}.

* Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b}=p^{k} \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\operatorname{gcd}(n, d)=1$. The p-adic valuation ord ${ }_{p}(\cdot)$ is defined on \mathbb{Q} to be $\operatorname{ord}_{p}(a / b)=k$.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

Passing to \mathbb{Q}_{p}

We can efficiently encode the roots of f over $\mathbb{Z} /\left(p^{k}\right)$ for successively larger k by finding the roots of f over \mathbb{Q}_{p}.

* Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b}=p^{k} \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\operatorname{gcd}(n, d)=1$. The p-adic valuation ord ${ }_{p}(\cdot)$ is defined on \mathbb{Q} to be $\operatorname{ord}_{p}(a / b)=k$.
* Define the p-adic absolute value $|\cdot|_{p}$ on \mathbb{Q} by $\left|\frac{a}{b}\right|_{p}=p^{-\operatorname{ord}_{p}(a / b)}$.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

Passing to \mathbb{Q}_{p}

We can efficiently encode the roots of f over $\mathbb{Z} /\left(p^{k}\right)$ for successively larger k by finding the roots of f over \mathbb{Q}_{p}.

* Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b}=p^{k} \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\operatorname{gcd}(n, d)=1$. The p-adic valuation ord ${ }_{p}(\cdot)$ is defined on \mathbb{Q} to be $\operatorname{ord}_{p}(a / b)=k$.
* Define the p-adic absolute value $|\cdot|_{p}$ on \mathbb{Q} by $\left|\frac{a}{b}\right|_{p}=p^{-\operatorname{ord}_{p}(a / b)}$.
* The completion of \mathbb{Q} with respect to $|\cdot|$ is denoted by \mathbb{Q}_{p}, the p-adic numbers.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

Passing to \mathbb{Q}_{p}

We can efficiently encode the roots of f over $\mathbb{Z} /\left(p^{k}\right)$ for successively larger k by finding the roots of f over \mathbb{Q}_{p}.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

* Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b}=p^{k} \frac{n}{d}$, where $k \in \mathbb{Z}$ and $\operatorname{gcd}(n, d)=1$. The p-adic valuation ord ${ }_{p}(\cdot)$ is defined on \mathbb{Q} to be $\operatorname{ord}_{p}(a / b)=k$.
* Define the p-adic absolute value $|\cdot|_{p}$ on \mathbb{Q} by $\left|\frac{a}{b}\right|_{p}=p^{-\operatorname{ord}_{p}(a / b)}$.
* The completion of \mathbb{Q} with respect to $|\cdot|$ is denoted by \mathbb{Q}_{p}, the p-adic numbers.
* p-adic numbers can also be expressed by formal series $\sum_{j=s}^{\infty} a_{j} p^{j}$, where $a_{j} \in\{0, \ldots, p-1\}$

An Analogy

Figure 2: 3-adic integers (Quanta Magazine, 2020)

* Consider the sequence obtained by extracting the digits of the non-1 root of $x^{2}-1$ over $\mathbb{Z}_{3}: 2,2+2 \cdot 3$, $2+2 \cdot 3+2 \cdot 3^{2}, \ldots$

Figure 3: Bisection Method (Wikipedia, 2021)

* Consider the sequence obtained by applying the bisection method to $\sqrt{2}$ in the interval [1, 2]: 1, 1.25, 1.375, 1.4375, ...
* Both sequences converge at a geometric rate! Applying Newton's method to either allows both to converge even faster!

How to solve over \mathbb{Q}_{p} : Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction
An example over \mathbb{Q}_{17} :
$f(x)=1-x^{340}$ $\bmod p$.

How to solve over \mathbb{Q}_{p} : Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction $\bmod p$. For a degenerate root $\zeta \in \mathbb{F}_{p}$ of \tilde{f}, define
$s(f, \zeta):=\min _{i \geq 0}\left\{i+\operatorname{ord}_{p} \frac{f^{(i)}(\zeta)}{i!}\right\}$.

An example over \mathbb{Q}_{17} :

$$
f(x)=1-x^{340}
$$

How to solve over \mathbb{Q}_{p} : Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction $\bmod p$. For a degenerate root $\zeta \in \mathbb{F}_{p}$ of \tilde{f}, define
$s(f, \zeta):=\min _{i \geq 0}\left\{i+\operatorname{ord}_{p} \frac{f^{(i)}(\zeta)}{i!}\right\}$. For $k \in \mathbb{N}, i \geq 1$, define inductively a set $T_{p, k}(f)$ of pairs $\left(f_{i-1}, k_{i-1}\right) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows:

An example over \mathbb{Q}_{17} :

How to solve over \mathbb{Q}_{p} : Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction $\bmod p$. For a degenerate root $\zeta \in \mathbb{F}_{p}$ of \tilde{f}, define $s(f, \zeta):=$ $\min _{i \geq 0}\left\{i+\operatorname{ord}_{p} \frac{f^{(i)}(\zeta)}{i!}\right\}$. For $k \in \mathbb{N}, i \geq 1$, define inductively a set $T_{p, k}(f)$ of pairs $\left(f_{i-1}, k_{i-1}\right) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows: Set $\left(f_{0}, k_{0}\right):=(f, k)$, then for $i \geq 1$ with
$\left(f_{i-1}, k_{i-1}\right) \in T_{p, k}(f)$, and any degenerate root $\zeta_{i-1} \in \mathbb{F}_{p}$ with $s_{i-1}:=s\left(f_{i-1}, \zeta_{i-1}\right)$, let $k_{i}:=k_{i-1}-s_{i-1}, f_{i}(x):=$ $p^{-s\left(f_{i-1, \mu}, \zeta_{i-1}\right)} f_{i-1}\left(\zeta_{i-1}+p x\right)$ $\bmod p^{k_{i}}$, and include $\left(f_{i}, k_{i}\right)$ in $T_{p, k}(f)$.

An example over \mathbb{Q}_{17} :

$$
\left(f(x)=1-x^{340}, k \geq 3\right)
$$

How to solve over \mathbb{Q}_{p} : Trees

Definition

An example over \mathbb{Q}_{3} :

$$
\left(f_{0}(x)=x^{9}-1, k_{0} \geq 3\right)
$$

Define $\mathcal{T}_{p, k}(f)$ inductively as
follows: (i) Set $f_{0}=f, k_{0}=k$, and let (f_{0}, k_{0}) be the label of the root node of $\mathcal{T}_{p, k}(f)$.

How to solve over \mathbb{Q}_{p} : Trees

Definition

Define $\mathcal{T}_{p, k}(f)$ inductively as follows: (i) Set $f_{0}=f, k_{0}=k$, and let (f_{0}, k_{0}) be the label of the root node of $\mathcal{T}_{p, k}(f)$. (ii) The non-root nodes of $\mathcal{T}_{p, k}(f)$ are labeled by the $\left(f_{i}, k_{i}\right) \in T_{p, k}(f)$ for $i \geq 1$.

An example over \mathbb{Q}_{3} :

$$
\left(f_{0}(x)=1-x^{9}, k_{0} \geq 3\right)
$$

$$
\mid
$$

$$
\left(f_{1}, k-2\right), \tilde{f}_{1}=x
$$

How to solve over \mathbb{Q}_{p} : Trees

An example over \mathbb{Q}_{3} :

$$
\begin{gathered}
\left(f_{0}(x)=1-x^{9}, k_{0} \geq 3\right) \\
\left(f_{1}, k-2\right), \tilde{f}_{1}=x
\end{gathered}
$$

Define $\mathcal{T}_{p, k}(f)$ inductively as follows: (i) Set $f_{0}=f, k_{0}=k$, and let (f_{0}, k_{0}) be the label of the root node of $\mathcal{T}_{p, k}(f)$. (ii)
The non-root nodes of $\mathcal{T}_{p, k}(f)$ are labeled by the
$\left(f_{i}, k_{i}\right) \in T_{p, k}(f)$ for $i \geq 1$. (iii)
There is an edge from node
(f_{i-1}, k_{i-1}) to node (f_{i}, k_{i}) iff there is a degenerate root
$\zeta_{i-1} \in \mathbb{F}_{p}$ of \tilde{f}_{i-1} with
$s\left(f_{i-1}, \zeta_{i-1}\right) \in\left\{2, \ldots, k_{i-1}-1\right\}$.

Definition

Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of $\mathcal{T}_{p, k}(f)$ above, let $f=f_{0,0}=c_{0}+c_{1} x^{d} \in \mathbb{Z}[x]$ with $c_{0} c_{1} \neq 0 \bmod p$. Then for all k, the tree $\mathcal{T}_{p, k}(f)$ has depth at most 1 .

Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of $\mathcal{T}_{p, k}(f)$ above, let $f=f_{0,0}=c_{0}+c_{1} x^{d} \in \mathbb{Z}[x]$ with $c_{0} c_{1} \neq 0 \bmod p$. Then for all k, the tree $\mathcal{T}_{p, k}(f)$ has depth at most 1 .

* The tree gives approximate roots of f in just two digits!

Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of $\mathcal{T}_{p, k}(f)$ above, let $f=f_{0,0}=c_{0}+c_{1} x^{d} \in \mathbb{Z}[x]$ with $c_{0} c_{1} \neq 0 \bmod p$. Then for all k, the tree $\mathcal{T}_{p, k}(f)$ has depth at most 1 .

* The tree gives approximate roots of f in just two digits!
* This gives complexity of root-approximating algorithms linear in $\operatorname{gcd}(d, p-1)$ and polynomial in $\log (d p H)$, where $H=\max \left\{c_{0}, c_{1}\right\}$

Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of $\mathcal{T}_{p, k}(f)$ above, let $f=f_{0,0}=c_{0}+c_{1} x^{d} \in \mathbb{Z}[x]$ with $c_{0} c_{1} \neq 0 \bmod p$. Then for all k, the tree $\mathcal{T}_{p, k}(f)$ has depth at most 1 .

* The tree gives approximate roots of f in just two digits!
* This gives complexity of root-approximating algorithms linear in $\operatorname{gcd}(d, p-1)$ and polynomial in $\log (d p H)$, where $H=\max \left\{c_{0}, c_{1}\right\}$
* Also, the roots are never less than $1 / p$ apart.

Trees and Trinomials

Theorem (Rojas and Zhu, 2021)

Let $f=c_{1}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}}$ be a trinomial with $0<a_{2}<a_{3}, p \nmid c_{1}$. Define $S_{0}=\max \left\{s\left(f, \zeta_{0}\right) \mid \zeta_{0}\right.$ is a degenerate root of f over $\left.\{0,1, \ldots p-1\}\right\}$ and $D=\max \left\{\operatorname{ord}_{p}(\zeta-\xi) \mid \zeta, \xi\right.$ are non-degenerate roots of f over $\left.\mathbb{Q}_{p}\right\}$, setting either quantity to 0 if not applicable. Then $k \geq 1+S_{0} \min \{1, D\}+M_{p} \max \{D-1,0\}$ (where $M_{p}=4,3$, or 2 , according to $p=2, p=3, p \geq 5$) guarantees $\mathcal{T}_{p, k}$ has depth at least D.

Trees and Trinomials

Theorem (Rojas and Zhu, 2021)

Let $f=c_{1}+c_{2} x^{a_{2}}+c_{3} x^{a_{3}}$ be a trinomial with $0<a_{2}<a_{3}, p \nmid c_{1}$. Define $S_{0}=\max \left\{s\left(f, \zeta_{0}\right) \mid \zeta_{0}\right.$ is a degenerate root of f over $\left.\{0,1, \ldots p-1\}\right\}$ and
$D=\max \left\{\operatorname{ord}_{p}(\zeta-\xi) \mid \zeta, \xi\right.$ are non-degenerate roots of f over $\left.\mathbb{Q}_{p}\right\}$, setting either quantity to 0 if not applicable. Then $k \geq 1+S_{0} \min \{1, D\}+M_{p} \max \{D-1,0\}$ (where $M_{p}=4,3$, or 2 , according to $p=2, p=3, p \geq 5$) guarantees $\mathcal{T}_{p, k}$ has depth at least D.

* Explicit, but worse (not $O(1)$) on k than in the binomial case.
* The analogous root spacing bound induced is given by $|\log | z_{1}-\left.z_{2}\right|_{p} \mid=O\left(p \log ^{2}(d H) \log _{p}(d)\right)$.
* Two simple families of examples prove that the minimal root spacing is at least linear in $\log (d H)$ and that the depth of k has dependence on D and S_{0}.

Two families of examples

Example

The family $g_{p}(x)=x^{2}-\left(2+p^{j}\right) x+\left(1+p^{j}\right)$ has roots $z_{1}=1, z_{2}=1+p^{j}$, so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (H-2)$.

Two families of examples

Example

The family $g_{p}(x)=x^{2}-\left(2+p^{j}\right) x+\left(1+p^{j}\right)$ has roots $z_{1}=1, z_{2}=1+p^{j}$, so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (H-2)$.

* It is clear from factoring that $g_{p}(x)=f_{0}(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p, k}\left(g_{p}(x)\right)$.

Two families of examples

Example

The family $g_{p}(x)=x^{2}-\left(2+p^{j}\right) x+\left(1+p^{j}\right)$ has roots $z_{1}=1, z_{2}=1+p^{j}$, so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (H-2)$.

* It is clear from factoring that $g_{p}(x)=f_{0}(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p, k}\left(g_{p}(x)\right)$.
* $g_{p} \tilde{(x)}=x^{2}-2 x+1$ has degenerate root 1 over \mathbb{Z}_{p}, with $s_{0}\left(g_{p}(x), 1\right)=2$. We then have $k_{1}=k_{0}-2$ and $f_{1}=p^{-2}\left((1+p x)^{2}-\left(2+p^{j}\right)(1+p x)+1+p^{j}\right)=x^{2}-p^{j-1} x$ $\bmod p^{k_{1}}$.

Two families of examples

Example

The family $g_{p}(x)=x^{2}-\left(2+p^{j}\right) x+\left(1+p^{j}\right)$ has roots $z_{1}=1, z_{2}=1+p^{j}$, so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (H-2)$.

* It is clear from factoring that $g_{p}(x)=f_{0}(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p, k}\left(g_{p}(x)\right)$.
* $g_{p}(x)=x^{2}-2 x+1$ has degenerate root 1 over \mathbb{Z}_{p}, with $s_{0}\left(g_{p}(x), 1\right)=2$. We then have $k_{1}=k_{0}-2$ and $f_{1}=p^{-2}\left((1+p x)^{2}-\left(2+p^{j}\right)(1+p x)+1+p^{j}\right)=x^{2}-p^{j-1} x$ $\bmod p^{k_{1}}$.
* Proceeding, we obtain a chain $f_{i}=x^{2}-p^{j-i} \times$ for $i \leq j$. At $i=j$, the mod- p reduction of f_{i} splits into non-degenerate roots 0 and 1 .

Two families of examples

Example

The family $g_{p}(x)=x^{2}-\left(2+p^{j}\right) x+\left(1+p^{j}\right)$ has roots $z_{1}=1, z_{2}=1+p^{j}$, so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (H-2)$.

* It is clear from factoring that $g_{p}(x)=f_{0}(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p, k}\left(g_{p}(x)\right)$.
* $g_{p}(x)=x^{2}-2 x+1$ has degenerate root 1 over \mathbb{Z}_{p}, with $s_{0}\left(g_{p}(x), 1\right)=2$. We then have $k_{1}=k_{0}-2$ and $f_{1}=p^{-2}\left((1+p x)^{2}-\left(2+p^{j}\right)(1+p x)+1+p^{j}\right)=x^{2}-p^{j-1} x$ $\bmod p^{k_{1}}$.
* Proceeding, we obtain a chain $f_{i}=x^{2}-p^{j-i} \times$ for $i \leq j$. At $i=j$, the mod- p reduction of f_{i} splits into non-degenerate roots 0 and 1 .
* We see $k \geq 2 j+1=1+S_{0}+2(D-1)$ is required to detect both non-degenerate roots in the tree.

Two families of examples

Example

The family $g_{p}(x)=x^{2}-\left(2+p^{j}\right) x+\left(1+p^{j}\right)$ has roots $z_{1}=1, z_{2}=1+p^{j}$, so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (H-2)$.

* It is clear from factoring that $g_{p}(x)=f_{0}(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p, k}\left(g_{p}(x)\right)$.
* $g_{p}(x)=x^{2}-2 x+1$ has degenerate root 1 over \mathbb{Z}_{p}, with $s_{0}\left(g_{p}(x), 1\right)=2$. We then have $k_{1}=k_{0}-2$ and $f_{1}=p^{-2}\left((1+p x)^{2}-\left(2+p^{j}\right)(1+p x)+1+p^{j}\right)=x^{2}-p^{j-1} x$ $\bmod p^{k_{1}}$.
* Proceeding, we obtain a chain $f_{i}=x^{2}-p^{j-i} \times$ for $i \leq j$. At $i=j$, the mod- p reduction of f_{i} splits into non-degenerate roots 0 and 1 .
* We see $k \geq 2 j+1=1+S_{0}+2(D-1)$ is required to detect both non-degenerate roots in the tree.

Example

Similarly, we can prove family $h_{p}(x)=x^{p^{j}+2}-2 x+1$ has roots $z_{1}=1$, $z_{2}=1+(p-1) p^{j}+\ldots$ (so that $\log \left|z_{1}-z_{2}\right|_{p}=-\log (d-2)$) and extremal k.

Acknowledgements

* Professor Rojas
* TAs and Professors
* TAMU and NSF

Thank you for listening!

