Solving Trinomials over \mathbb{Q}_p

Elliott Fairchild

July 27, 2021

Let $f(x)=c_1x^{a_1}+c_2x^{a_2}+c_3x^{a_3}\in\mathbb{Z}[x].$ How many roots of f over $\mathbb{Z}/(p^k)$ are there, and where do they lie?

Let $f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z}/(p^k)$ are there, and where do they lie?

* Can information about roots of f over $\mathbb{Z}/(p)$ say anything about roots of f over $\mathbb{Z}/(p^k)$?

Let $f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z}/(p^k)$ are there, and where do they lie?

- * Can information about roots of f over $\mathbb{Z}/(p)$ say anything about roots of f over $\mathbb{Z}/(p^k)$?
- * If the root is simple, then Hensel's Lemma gives us the desired result.

Let $f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z}/(p^k)$ are there, and where do they lie?

- * Can information about roots of f over $\mathbb{Z}/(p)$ say anything about roots of f over $\mathbb{Z}/(p^k)$?
- * If the root is simple, then Hensel's Lemma gives us the desired result.
- Degenerate roots are more tricky...

Let $f(x) = c_1 x^{a_1} + c_2 x^{a_2} + c_3 x^{a_3} \in \mathbb{Z}[x]$. How many roots of f over $\mathbb{Z}/(p^k)$ are there, and where do they lie?

- * Can information about roots of f over $\mathbb{Z}/(p)$ say anything about roots of f over $\mathbb{Z}/(p^k)$?
- * If the root is simple, then Hensel's Lemma gives us the desired result.
- Degenerate roots are more tricky...

Example

Let $f(x) = x^2$. Then f has a single degenerate root at 0 over $\mathbb{Z}/(p)$, but over $\mathbb{Z}/(p^2)$, the roots are given by (0, p, ..., (p-1)p).

Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q₁,..., q_ρ) of elements of Z/(p^k).

- * Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q_1, \ldots, q_ρ) of elements of $\mathbb{Z}/(p^k)$.
- * We can also represent K with an element F of $(\mathbb{Z}/(p^k))[x]_{<\rho}$ by letting q_i equal the coefficient of x^{i-1} .

- * Just as strings of bits can represent words and data, we can consider a more general code K written as a tuple (q_1, \ldots, q_ρ) of elements of $\mathbb{Z}/(p^k)$.
- * We can also represent K with an element F of $(\mathbb{Z}/(p^k))[x]_{<\rho}$ by letting q_i equal the coefficient of x^{i-1} .
- * Applications in error-correction involve computing roots of a polynomial $G \in (\mathbb{Z}/(p^k))[x][y]$ over $(\mathbb{Z}/(p^k))[x]$.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

* Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and gcd(n, d) = 1. The *p*-adic valuation $ord_p(\cdot)$ is defined on \mathbb{Q} to be $ord_p(a/b) = k$.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

- ★ Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and gcd(n, d) = 1. The *p*-adic valuation $ord_p(\cdot)$ is defined on \mathbb{Q} to be $ord_p(a/b) = k$.
- ★ Define the *p*-adic absolute value | · |_p on Q by |^a/_b|_p = p^{-ord_p(a/b).}

Figure 1: 3-adic integers (Quanta Magazine, 2020)

- ★ Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and gcd(n, d) = 1. The *p*-adic valuation $ord_p(\cdot)$ is defined on \mathbb{Q} to be $ord_p(a/b) = k$.
- Define the *p*-adic absolute value | · |_p on Q by |^a/_b|_p = p^{-ord_p(a/b)}.
- The completion of Q with respect to | · | is denoted by Q_p, the p-adic numbers.

Figure 1: 3-adic integers (Quanta Magazine, 2020)

- ★ Observe we can uniquely write any rational $\frac{a}{b}$ as $\frac{a}{b} = p^k \frac{n}{d}$, where $k \in \mathbb{Z}$ and gcd(n, d) = 1. The *p*-adic valuation $ord_p(\cdot)$ is defined on \mathbb{Q} to be $ord_p(a/b) = k$.
- Define the *p*-adic absolute value | · |_p on Q by |^a/_b|_p = p^{-ord_p(a/b)}.
- The completion of Q with respect to |·| is denoted by Q_p, the p-adic numbers.
- * *p*-adic numbers can also be expressed by formal series $\sum_{j=s}^{\infty} a_j p^j$, where $a_j \in \{0, \dots, p-1\}$

An Analogy

Figure 2: 3-adic integers (Quanta Magazine, 2020)

Consider the sequence obtained by extracting the digits of the non-1 root of x² - 1 over Z₃: 2, 2 + 2 · 3, 2 + 2 · 3 + 2 · 3², ...

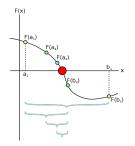


Figure 3: Bisection Method (Wikipedia, 2021)

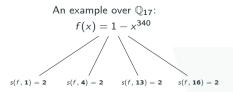
- Consider the sequence obtained by applying the bisection method to \sqrt{2} in the interval [1, 2]: 1, 1.25, 1.375, 1.4375, ...
- Both sequences converge at a geometric rate! Applying Newton's method to either allows both to converge even faster!

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p.

An example over \mathbb{Q}_{17} : $f(x) = 1 - x^{340}$

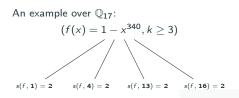
Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f} , define

 $s(f,\zeta) := \min_{i\geq 0} \{i + \operatorname{ord}_p \frac{f^{(i)}(\zeta)}{i!}\}.$



Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f} , define

 $s(f, \zeta) := \min_{i \ge 0} \{i + \operatorname{ord}_{p} \frac{f^{(i)}(\zeta)}{i!} \}$. For $k \in \mathbb{N}, i \ge 1$, define inductively a set $T_{p,k}(f)$ of pairs $(f_{i-1}, k_{i-1}) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows:

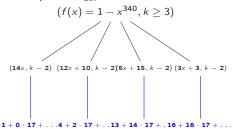


How to solve over \mathbb{Q}_p : Trees

Definition

Let $f \in \mathbb{Z}[x]$ and let \tilde{f} be its reduction mod p. For a degenerate root $\zeta \in \mathbb{F}_p$ of \tilde{f} , define $s(f, \zeta) :=$ $\min_{i\geq 0}\{i + \operatorname{ord}_{p} \frac{f^{(i)}(\zeta)}{i!}\}.$ For $k \in \mathbb{N}, i \geq 1$, define inductively a set $T_{p,k}(f)$ of pairs $(f_{i-1}, k_{i-1}) \in \mathbb{Z}[x] \times \mathbb{N}$ as follows: Set $(f_0, k_0) := (f, k)$, then for i > 1 with $(f_{i-1}, k_{i-1}) \in T_{p,k}(f)$, and any degenerate root $\zeta_{i-1} \in \mathbb{F}_p$ with $s_{i-1} := s(f_{i-1}, \zeta_{i-1})$, let $k_i := k_{i-1} - s_{i-1}, f_i(x) :=$ $p^{-s(f_{i-1,\mu},\zeta_{i-1})}f_{i-1}(\zeta_{i-1}+px)$ mod p^{k_i} , and include (f_i, k_i) in $T_{p,k}(f)$.

An example over \mathbb{Q}_{17} :



Define $\mathcal{T}_{p,k}(f)$ inductively as follows: (i) Set $f_0 = f$, $k_0 = k$, and let (f_0, k_0) be the label of the root node of $\mathcal{T}_{p,k}(f)$. An example over \mathbb{Q}_3 : $(f_0(x) = x^9 - 1, k_0 \ge 3)$

Define $\mathcal{T}_{p,k}(f)$ inductively as follows: (i) Set $f_0 = f$, $k_0 = k$, and let (f_0, k_0) be the label of the root node of $\mathcal{T}_{p,k}(f)$. (ii) The non-root nodes of $\mathcal{T}_{p,k}(f)$ are labeled by the $(f_i, k_i) \in \mathcal{T}_{p,k}(f)$ for $i \geq 1$. An example over \mathbb{Q}_3 : $(f_0(x) = 1 - x^9, k_0 \ge 3)$ | $(f_1, k - 2), \tilde{f}_1 = x$

Define $\mathcal{T}_{p,k}(f)$ inductively as follows: (i) Set $f_0 = f$, $k_0 = k$, and let (f_0, k_0) be the label of the root node of $\mathcal{T}_{p,k}(f)$. (ii) The non-root nodes of $\mathcal{T}_{p,k}(f)$ are labeled by the $(f_i, k_i) \in \mathcal{T}_{p,k}(f)$ for $i \ge 1$. (iii) There is an edge from node (f_{i-1}, k_{i-1}) to node (f_i, k_i) iff there is a degenerate root $\zeta_{i-1} \in \mathbb{F}_p$ of \tilde{f}_{i-1} with $s(f_{i-1}, \zeta_{i-1}) \in \{2, \dots, k_{i-1}-1\}$.

An example over
$$\mathbb{Q}_3$$
:
 $(f_0(x) = 1 - x^9, k_0 \ge 3)$
 $(f_1, k - 2), \tilde{f_1} = x$

1

Following the notation of $\mathcal{T}_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0c_1 \neq 0 \mod p$. Then for all k, the tree $\mathcal{T}_{p,k}(f)$ has depth at most 1.

Following the notation of $\mathcal{T}_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0c_1 \neq 0 \mod p$. Then for all k, the tree $\mathcal{T}_{p,k}(f)$ has depth at most 1.

The tree gives approximate roots of f in just two digits!

Following the notation of $\mathcal{T}_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0c_1 \neq 0 \mod p$. Then for all k, the tree $\mathcal{T}_{p,k}(f)$ has depth at most 1.

- The tree gives approximate roots of f in just two digits!
- This gives complexity of root-approximating algorithms linear in gcd(d, p 1) and polynomial in log(dpH), where H = max{c₀, c₁}

Following the notation of $\mathcal{T}_{p,k}(f)$ above, let $f = f_{0,0} = c_0 + c_1 x^d \in \mathbb{Z}[x]$ with $c_0c_1 \neq 0 \mod p$. Then for all k, the tree $\mathcal{T}_{p,k}(f)$ has depth at most 1.

- The tree gives approximate roots of f in just two digits!
- This gives complexity of root-approximating algorithms linear in gcd(d, p 1) and polynomial in log(dpH), where H = max{c₀, c₁}
- * Also, the roots are never less than 1/p apart.

Let $f = c_1 + c_2 x^{a_2} + c_3 x^{a_3}$ be a trinomial with $0 < a_2 < a_3$, $p \nmid c_1$. Define $S_0 = \max\{s(f, \zeta_0) \mid \zeta_0 \text{ is a degenerate root of f over } \{0, 1, \dots, p-1\}\}$ and $D = \max\{ord_p(\zeta - \xi) \mid \zeta, \xi \text{ are non-degenerate roots of f over } \mathbb{Q}_p\}$, setting either quantity to 0 if not applicable. Then $k \ge 1 + S_0 \min\{1, D\} + M_p \max\{D-1, 0\}$ (where $M_p = 4$, 3, or 2, according to p = 2, p = 3, $p \ge 5$) guarantees $\mathcal{T}_{p,k}$ has depth at least D.

Let $f = c_1 + c_2 x^{a_2} + c_3 x^{a_3}$ be a trinomial with $0 < a_2 < a_3$, $p \nmid c_1$. Define $S_0 = \max\{s(f, \zeta_0) \mid \zeta_0 \text{ is a degenerate root of f over } \{0, 1, \dots, p-1\}\}$ and $D = \max\{ord_p(\zeta - \xi) \mid \zeta, \xi \text{ are non-degenerate roots of f over } \mathbb{Q}_p\}$, setting either quantity to 0 if not applicable. Then $k \ge 1 + S_0 \min\{1, D\} + M_p \max\{D - 1, 0\}$ (where $M_p = 4$, 3, or 2, according to p = 2, p = 3, $p \ge 5$) guarantees $\mathcal{T}_{p,k}$ has depth at least D.

- * Explicit, but worse (not O(1)) on k than in the binomial case.
- ★ The analogous root spacing bound induced is given by $|\log |z_1 - z_2|_p| = O(p \log^2(dH) \log_p(d)).$
- Two simple families of examples prove that the minimal root spacing is at least linear in log(dH) and that the depth of k has dependence on D and S₀.

Two families of examples

Example

The family $g_p(x) = x^2 - (2 + p^j)x + (1 + p^j)$ has roots $z_1 = 1$, $z_2 = 1 + p^j$, so that $\log |z_1 - z_2|_p = -\log(H - 2)$.

* It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p,k}(g_p(x))$.

Two families of examples

Example

- * It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p,k}(g_p(x))$.
- * $g_p(x) = x^2 2x + 1$ has degenerate root 1 over \mathbb{Z}_p , with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 2$ and $f_1 = p^{-2}((1 + px)^2 (2 + p^j)(1 + px) + 1 + p^j) = x^2 p^{j-1}x \mod p^{k_1}$.

- * It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p,k}(g_p(x))$.
- * $g_p(x) = x^2 2x + 1$ has degenerate root 1 over \mathbb{Z}_p , with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 2$ and $f_1 = p^{-2}((1+px)^2 (2+p^j)(1+px) + 1+p^j) = x^2 p^{j-1}x \mod p^{k_1}$.
- * Proceeding, we obtain a chain $f_i = x^2 p^{j-i}x$ for $i \le j$. At i = j, the mod-*p* reduction of f_i splits into non-degenerate roots 0 and 1.

- * It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p,k}(g_p(x))$.
- * $g_p(x) = x^2 2x + 1$ has degenerate root 1 over \mathbb{Z}_p , with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 2$ and $f_1 = p^{-2}((1+px)^2 (2+p^j)(1+px) + 1+p^j) = x^2 p^{j-1}x \mod p^{k_1}$.
- * Proceeding, we obtain a chain $f_i = x^2 p^{j-i}x$ for $i \le j$. At i = j, the mod-p reduction of f_i splits into non-degenerate roots 0 and 1.
- * We see $k \ge 2j + 1 = 1 + S_0 + 2(D 1)$ is required to detect both non-degenerate roots in the tree.

The family $g_p(x) = x^2 - (2 + p^j)x + (1 + p^j)$ has roots $z_1 = 1$, $z_2 = 1 + p^j$, so that $\log |z_1 - z_2|_p = -\log(H - 2)$.

- * It is clear from factoring that $g_p(x) = f_0(x)$ has its roots as claimed. We now make use of the tree $\mathcal{T}_{p,k}(g_p(x))$.
- * $g_p(x) = x^2 2x + 1$ has degenerate root 1 over \mathbb{Z}_p , with $s_0(g_p(x), 1) = 2$. We then have $k_1 = k_0 2$ and $f_1 = p^{-2}((1+px)^2 (2+p^j)(1+px) + 1+p^j) = x^2 p^{j-1}x \mod p^{k_1}$.
- * Proceeding, we obtain a chain $f_i = x^2 p^{j-i}x$ for $i \le j$. At i = j, the mod-p reduction of f_i splits into non-degenerate roots 0 and 1.
- * We see $k \ge 2j + 1 = 1 + S_0 + 2(D 1)$ is required to detect both non-degenerate roots in the tree.

Example

Similarly, we can prove family $h_p(x) = x^{p^j+2} - 2x + 1$ has roots $z_1 = 1$, $z_2 = 1 + (p-1)p^j + \dots$ (so that $\log |z_1 - z_2|_p = -\log(d-2)$) and extremal k.

- Professor Rojas
- TAs and Professors
- ✤ TAMU and NSF

Thank you for listening!