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I
Solving Trinomials

Problem

Let f (x) = c1xa1 + c2xa2 + c3xa3 ∈ Z[x]. How many roots of f over Z/(pk ) are
there, and where do they lie?

I Can information about roots of f over Z/(p) say anything about roots of f over
Z/(pk )?

I If the root is simple, then Hensel’s Lemma gives us the desired result.

I Degenerate roots are more tricky...

Example

Let f (x) = x2. Then f has a single degenerate root at 0 over Z/(p), but over
Z/(p2), the roots are given by (0, p, . . . , (p − 1)p).
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I
Applications to Coding Theory

I Just as strings of bits can represent words and data, we can consider a more
general code K written as a tuple (q1, . . . , qρ) of elements of Z/(pk ).

I We can also represent K with an element F of (Z/(pk ))[x]<ρ by letting qi equal
the coefficient of x i−1.

I Applications in error-correction involve computing roots of a polynomial
G ∈ (Z/(pk ))[x][y ] over (Z/(pk ))[x].
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I
Passing to Qp

We can efficiently encode the roots of f over Z/(pk ) for successively larger k by
finding the roots of f over Qp .

Figure 1: 3-adic integers (Quanta
Magazine, 2020)

I Observe we can uniquely write any
rational a

b
as a

b
= pk n

d
, where k ∈ Z

and gcd(n, d) = 1. The p-adic
valuation ordp(·) is defined on Q to be
ordp(a/b) = k.

I Define the p-adic absolute value | · |p
on Q by | a

b
|p = p−ordp(a/b).

I The completion of Q with respect to
| · | is denoted by Qp , the p-adic
numbers.

I p-adic numbers can also be expressed
by formal series

∑∞
j=s ajp

j , where
aj ∈ {0, . . . , p − 1}
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I
An Analogy

Figure 2: 3-adic integers (Quanta
Magazine, 2020)

I Consider the sequence
obtained by extracting the
digits of the non-1 root of
x2 − 1 over Z3: 2, 2+ 2 · 3,
2+ 2 · 3+ 2 · 32, . . .

Figure 3: Bisection Method (Wikipedia, 2021)

I Consider the sequence obtained by
applying the bisection method to

√
2

in the interval [1, 2]: 1, 1.25, 1.375,
1.4375, . . .

I Both sequences converge at a geometric rate! Applying Newton’s method to
either allows both to converge even faster!
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I
How to solve over Qp: Trees

Definition

Let f ∈ Z[x] and let f̃ be its reduction
mod p.

An example over Q17:
f (x) = 1− x340
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How to solve over Qp: Trees

Definition

Let f ∈ Z[x] and let f̃ be its reduction
mod p. For a degenerate root ζ ∈ Fp of
f̃ , define

s(f , ζ) := mini≥0{i + ordp
f (i)(ζ)

i!
}.

An example over Q17:
f (x) = 1− x340

s(f , 1) = 2 s(f , 4) = 2 s(f , 13) = 2 s(f , 16) = 2
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mod p. For a degenerate root ζ ∈ Fp of
f̃ , define

s(f , ζ) := mini≥0{i + ordp
f (i)(ζ)

i!
}. For

k ∈ N, i ≥ 1, define inductively a set
Tp,k (f ) of pairs (fi−1, ki−1) ∈ Z[x]× N
as follows:

An example over Q17:
(f (x) = 1− x340, k ≥ 3)

s(f , 1) = 2 s(f , 4) = 2 s(f , 13) = 2 s(f , 16) = 2
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I
How to solve over Qp: Trees

Definition

Let f ∈ Z[x] and let f̃ be its
reduction mod p. For a
degenerate root ζ ∈ Fp of f̃ ,
define s(f , ζ) :=

mini≥0{i + ordp
f (i)(ζ)

i!
}. For

k ∈ N, i ≥ 1, define inductively a
set Tp,k (f ) of pairs
(fi−1, ki−1) ∈ Z[x]× N as
follows: Set (f0, k0) := (f , k),
then for i ≥ 1 with
(fi−1, ki−1) ∈ Tp,k (f ), and any
degenerate root ζi−1 ∈ Fp with
si−1 := s(fi−1, ζi−1), let
ki := ki−1 − si−1, fi (x) :=
p−s(fi−1,µ,ζi−1)fi−1(ζi−1 + px)

mod pki , and include (fi , ki ) in
Tp,k (f ).

An example over Q17:
(f (x) = 1− x340, k ≥ 3)

(14x, k − 2)

1 + 0 · 17 + . . .

(12x + 10, k − 2)

4 + 2 · 17 + . . .

(5x + 15, k − 2)

13 + 14 · 17 + . . .

(3x + 3, k − 2)

16 + 16 · 17 + . . .
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I
How to solve over Qp: Trees

Definition
Define Tp,k (f ) inductively as
follows: (i) Set f0 = f , k0 = k,
and let (f0, k0) be the label of
the root node of Tp,k (f ).

An example over Q3:
(f0(x) = x9 − 1, k0 ≥ 3)
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I
How to solve over Qp: Trees

Definition
Define Tp,k (f ) inductively as
follows: (i) Set f0 = f , k0 = k,
and let (f0, k0) be the label of
the root node of Tp,k (f ). (ii)
The non-root nodes of Tp,k (f )
are labeled by the
(fi , ki ) ∈ Tp,k (f ) for i ≥ 1. (iii)
There is an edge from node
(fi−1, ki−1) to node (fi , ki ) iff
there is a degenerate root
ζi−1 ∈ Fp of f̃i−1 with
s(fi−1, ζi−1) ∈ {2, . . . , ki−1−1}.

An example over Q3:
(f0(x) = 1− x9, k0 ≥ 3)

(f1, k − 2), f̃1 = x
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I
Trees and Binomials

Theorem (Rojas and Zhu, 2021)

Following the notation of Tp,k (f ) above, let f = f0,0 = c0 + c1xd ∈ Z[x] with
c0c1 6= 0 mod p. Then for all k, the tree Tp,k (f ) has depth at most 1.

I The tree gives approximate roots of f in just two digits!

I This gives complexity of root-approximating algorithms linear in gcd(d , p − 1)
and polynomial in log(dpH), where H = max{c0, c1}

I Also, the roots are never less than 1/p apart.
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I
Trees and Trinomials

Theorem (Rojas and Zhu, 2021)
Let f = c1 + c2xa2 + c3xa3 be a trinomial with 0 < a2 < a3, p - c1. Define
S0 = max{s(f , ζ0) | ζ0 is a degenerate root of f over {0, 1, . . . p − 1}} and
D = max{ordp(ζ − ξ) | ζ, ξ are non-degenerate roots of f over Qp}, setting either
quantity to 0 if not applicable. Then k ≥ 1+ S0 min{1,D}+Mp max{D − 1, 0}
(where Mp = 4, 3, or 2, according to p = 2, p = 3, p ≥ 5) guarantees Tp,k has
depth at least D.

I Explicit, but worse (not O(1)) on k than in the binomial case.

I The analogous root spacing bound induced is given by
| log |z1 − z2|p | = O(p log2(dH) logp(d)).

I Two simple families of examples prove that the minimal root spacing is at least
linear in log(dH) and that the depth of k has dependence on D and S0 .
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I
Two families of examples

Example

The family gp(x) = x2 − (2+ pj )x + (1+ pj ) has roots z1 = 1, z2 = 1+ pj , so that
log |z1 − z2|p = − log(H − 2).

I It is clear from factoring that gp(x) = f0(x) has its roots as claimed. We now
make use of the tree Tp,k (gp(x)).

I ˜gp(x) = x2−2x+1 has degenerate root 1 over Zp , with s0(gp(x), 1) = 2. We then
have k1 = k0−2 and f1 = p−2((1+px)2−(2+pj )(1+px)+1+pj ) = x2−pj−1x

mod pk1 .

I Proceeding, we obtain a chain fi = x2 − pj−ix for i ≤ j . At i = j , the mod-p
reduction of fi splits into non-degenerate roots 0 and 1.

I We see k ≥ 2j + 1 = 1+ S0 + 2(D − 1) is required to detect both non-degenerate
roots in the tree.

Example

Similarly, we can prove family hp(x) = xp
j+2 − 2x + 1 has roots z1 = 1,

z2 = 1+ (p − 1)pj + . . . (so that log |z1 − z2|p = − log(d − 2)) and extremal k.
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