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Abstract. It In this paper, we describe the cardinality of the value sets of trinomials
of the form cxd + x + a over Fp in terms of cosets of subgroups of F∗p, and present some
properties of the periodic points using functional graphs.

1. Introduction

It is very desirable to have “simple” function with “unpredictable” iterates, because
they might be good candidates or building blocks of pseudorandom generators. Sparse
polynomials over prime fields have not been explored in this direction as much. One notable
example is a class of pseudorandom number generators based on trinomials with a large
primitive factor presented in [BZ03].

It is conjectured that the range of f(x) = cxd + x for gcd(p− 1, d) = 1 and p3/5 < d < p
is close to all of Fp, and if this were true, one might conjecture further that f permutes F∗p
in an “unpredictable” way. A start on this problem would be to analyze their behaviors.
We will specifically look at the value sets and periodic points of trinomials of the form
cxd + x+ a over Fp.

2. Background

Definition 2.1 (Value set). Let f(x) ∈ Fp[x]. The value set of f is the set Vf = {f(a) |
a ∈ Fp}. The cardinality of Vf is denoted by #Vf .

Note that value set of f(x) = cxd+x+a differ from that of g(x) = cxd+x by a constant,
so for studying the value set of such polynomials, we can restrict ourselves to the case when
f(x) = cxd + x.

Let f(x) ∈ Fp[x]. For any positive integer m, we write fm(x) = f ◦ · · · ◦ f(x) for the mth
iterate of f under composition.

Definition 2.2 (Periodic point). Let f(x) ∈ Fp[x]. We say a ∈ Fp is a periodic point of f
if there exists positive integer n such that fn(a) = a.

Definition 2.3 (Functional graph). Given a function f : Fp → Fp, the functional graph of
f is a directed graph with p vertices labelled by the elements of Fp, where there is an edge
from u to v if and only if f(u) = v.

Functional graphs are relevant, because it is not hard to see that an element is a periodic
point of f if and only if its corresponding vertex is in a cycle in the functional graph, and
its period, the least positive n such that fn maps it to itself, is exactly the length of the
cycle it’s in.
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Using definition 2 from [BB13], the following proposition helps us simplify the problem
a bit. It is stated in terms of dynamical systems in [BB13], we use the functional graph
interpretation of it.

Proposition 2.4 ([BB13]). For a bijection ϕ : Fp → Fp, the functional graph of ϕ−1 ◦ f ◦ϕ
is isomorphic to that of f , for any f ∈ Fp[x].

Proof. Let’s denote the functional graph of f as Gf , and that of ϕ−1 ◦f ◦ϕ as Gϕf . Consider

the bijection ϕ−1 : Fp → Fp. For any edge a to f(a) in Gf , we have ϕ−1(a) to ϕ−1 ◦ f ◦
ϕ(ϕ−1(a)) = ϕ−1(f(a)) is also an edge in Gϕf .

For any edge a to ϕ−1 ◦ f ◦ ϕ(a) in Gϕf , we have ϕ(a) to f ◦ ϕ(a) = ϕ(ϕ−1 ◦ f ◦ ϕ(a)) is

also an edge in Gf . ϕ−1 is a graph isomorphism. �

For f(x) = cxd + x + a, if a 6= 0, we can take ϕ(x) = ax, and we get ϕ−1 ◦ f ◦ ϕ(x) =
(c(ax)d + ax+ a)/a = cad−1xd + x+ 1. Therefore, to study the behavior of such trinomials
under iterations, it suffices to consider ones of the form f(x) = cxd+x+1 and f(x) = cxd+x.

Another relevant construction is the covering graph, we present its definition here as well.

Definition 2.5. Let C,G be graphs. A covering map f : C → G is a surjection and a
local isomorphism: the neighbourhood of a vertex v in C is mapped bijectively onto the
neighbourhood of f(v) in G.

Definition 2.6. A graph C is a covering graph of graph G if there is a covering map from
C to G.

3. Results

Let f(x) = cxd + x ∈ Fp[x] such that c, d ∈ F∗p and d 6= 1, we define Hp(d) = gcd(p −
1, d−1), H to be the subgroup of Hp(d)th roots of unity in F∗p, and G to be the set of cosets
of H.

3.1. Value set.

We would like to study the cardinality of the value set. Let’s first consider a very special
case when d = (p+ 1)/2.

Proposition 3.1. Let f(x) = cx(p+1)/2 + x ∈ Fp[x]. If c 6= ±1 and (1 − c)/(1 + c) is a
square in Fp, then #Vf = p. If c = ±1 or (1 − c)/(1 + c) is not a square in Fp, then
#Vf = (p+ 1)/2.

Proof. f(x) = x(cx(p−1)/2 + 1), so f(x) =

{
x(c+ 1), if x is a square

x(−c+ 1), otherwise
.

If c = 1, then f(x) =

{
2x, if x is a square

0, otherwise
, and Vf = {2x | x = a2, a ∈ Fp} with

#Vf = (p+ 1)/2. If c = −1, then f(x) =

{
0, if x is a square

2x, otherwise
, and Vf = {0} ∪ {2x | x 6=

a2, for all a ∈ Fp} with #Vf = (p+ 1)/2.
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Now assume c 6= ±1, then f is injective on squares and non-squares respectively. Suppose
(1− c)/(1 + c) is a square in Fp. For x, y ∈ Fp. consider the equation x(1 + c) = y(1− c) for
x, y ∈ Fp. x = y(1− c)/(1 + c) is never satisfied when x is a square and y is not a square,
so the image of squares and non-squares are disjoint. We get Vf = Fp and #Vf = p in this
case. If (1− c)/(1 + c) is not a square in Fp, then x = y(1− c)/(1 + c) for x a square and
y not a square is a bijection between the two cosets, where f(x) = f(y), and f is a 2-to-1
function on F∗p. We get #Vf = (p+ 1)/2 in this case. �

We would like to generalize this. It turns out that the mapping given by f(x) = cxd+x ∈
Fp[x] is highly relevant to cosets of H. We first present some lemmas that describe its
properties.

Lemma 3.2. Let f(x) = cxd + x ∈ Fp[x]. For a coset of H, if its elements do not evaluate
to 0 under f , then f maps it bijectively to a coset of H. Otherwise f maps the entire coset
to 0.

Proof. Write f(x) = x(cxd−1 + 1). Let gH be a coset of H. For any element x = gh in gH,
cxd−1 + 1 = cgd−1hd−1 + 1 = cgd−1 + 1 is a constant. Therefore f(x) = (cgd−1 + 1)x for
x ∈ gH. If elements of gH do not evaluate to 0 under f , then cgd−1 + 1 6= 0 is invertible,
and f is a bijection from gH to (cgd−1 + 1)gH. If there exists x ∈ gH such that f(x) = 0,
then since x 6= 0, cgd−1 + 1 = 0, and f(x) = 0x for x ∈ gH. �

Corollary 3.3. For a 6= 0, f(x) = cxd + x+ a ∈ Fp[x] has at most (p− 1)/Hp(d) roots.

Proof. Denote g(x) = cxd+x. Note that the roots of f are exactly the set {x | g(x) = −a}.
Since a 6= 0, if −a ∈ Vg, then there is at most 1 element from each coset of H that maps to it
under g by Lemma 3.2. There are (p− 1)/Hp(d) cosets of H, and the corollary follows. �

Corollary 3.4. The value set of f(x) = cxd + x ∈ Fp[x] is a union of {0} and cosets of H.

Proof. Varying x over {0} and cosets of H gives us the corollary. �

We represent the cosets of H by G = {H, gH, g2H, . . . , g(p−1)/Hp(d)−1H}.

Lemma 3.5. For c ∈ F∗p, cgi(d−1) + 1 for 0 ≤ i ≤ (p− 1)/Hp(d)− 1 are distinct.

Proof. for 1 ≤ j < i ≤ (p−1)/Hp(d)−1, if cgi(d−1)+1 = cgj(d−1)+1, then i(d−1) = j(d−1)
mod (p − 1), which implies (i − j)(d − 1) ≡ 0 mod (p − 1). This only happens when
(p− 1)/Hp(d) | (i− j), but 0 ≤ i, j ≤ (p− 1)/Hp(d)− 1. �

Define a relation ∼(c,d) on G by giH ∼(c,d) g
jH if (cgi(d−1) + 1)/(cgj(d−1) + 1) ∈ gj−iH.

Our choice of coset representatives is well-defined for ∼(c,d), because g(i+k(p−1)/Hp(d))(d−1) =

gi(d−1)gk(p−1)(d−1)/Hp(d) = gi(d−1) for any k.

Lemma 3.6. If there exists i such that i(d − 1) ≡ logg(−1/c) mod (p − 1), then ∼(c,d) is

an equivalence relation on G \ {giH}. Otherwise, ∼(c,d) is an equivalence relation on G.

Proof. cgi(d−1) + 1 = 0 if and only if i(d − 1) ≡ logg(−1/c) mod (p − 1). Furthermore, if
i(d− 1) = j(d− 1) mod (p− 1), then (i− j)(d− 1) ≡ 0 mod (p− 1), which requires that
(p − 1)/Hp(d) | (i − j), and gj ∈ giH. Note that the existence of such i is independent
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of our choice of the generator g, because for any other generator g′ of F∗p, logg(−1/c) =
k logg′(−1/c) mod (p− 1), for some k coprime to p− 1.

With the assumption as stated in the lemma, we may now assume cgi(d−1) + 1 6= 0 for all
i. ∼(c,d) is reflexive because (cgi(d−1) + 1)/(cgi(d−1) + 1) = 1 ∈ H. It’s symmetric because if

(cgi(d−1)+1)/(cgj(d−1)+1) ∈ gj−iH, then (cgj(d−1)+1)/(cgi(d−1)+1) ∈ gi−jH. It’s transitive

because if (cgi(d−1) + 1)/(cgj(d−1) + 1) ∈ gj−iH and (cgj(d−1) + 1)/(cgk(d−1) + 1) ∈ gk−jH,

then (cgi(d−1) + 1)/(cgk(d−1) + 1) ∈ gk−iH. �

We are now ready to make the generalization of Proposition 3.1.

Theorem 3.7. Let f(x) = cxd + x ∈ Fp[x]. Let g be a generator of F∗p. If there exists i

such that i(d− 1) ≡ logg(−1/c) mod (p− 1), then #Vf = 1 +Hp(d)
∣∣(G \ {giH})/ ∼(c,d)

∣∣.
Otherwise #Vf = 1 +Hp(d)

∣∣G/ ∼(c,d)

∣∣.
Proof. f(x) = x(cgi(d−1) + 1) for x ∈ giH by Lemma 3.2.

First suppose there is no i such that i(d − 1) ≡ logg(−1/c) mod (p − 1), which implies

cgi(d−1) + 1 6= 0 for all i. If (cgi(d−1) + 1)/(cgj(d−1) + 1) ∈ gj−iH, then f(giH) = (cgi(d−1) +

1)giH = ((cgi(d−1) + 1)/(cgj(d−1) + 1))(cgj(d−1) + 1)giH = (cgj(d−1) + 1)gjH = f(gjH).

On the other hand, if (cgi(d−1) + 1)/(cgj(d−1) + 1) 6∈ gj−iH, then f(giH) = (cgi(d−1) +

1)giH = ((cgi(d−1) + 1)/(cgj(d−1) + 1))(cgj(d−1) + 1)giH 6= (cgj(d−1) + 1)gjH = f(gjH).
Therefore, f(giH) = f(gjH) if and only if giH ∼(c,d) g

jH. We get
∣∣G/ ∼(c,d)

∣∣ distinct

cosets of H together with 0 in Vf , which gives us #Vf = 1 +Hp(d)
∣∣G/ ∼(c,d)

∣∣.
Now suppose there exists i such that i(d − 1) ≡ logg(−1/c) mod (p − 1), we get that

cgi(d−1) + 1 = 0, and f(giH) = {0}. Since the constants cgj(d−1) + 1 are distinct for all
j, giH is the unique coset of H that evaluates to 0. The same proof as above applies to
G \ {giH}, and we get

∣∣(G \ {giH})/ ∼(c,d)

∣∣ distinct cosets of H together with 0 in Vf ,

which gives us #Vf = 1 +Hp(d)
∣∣(G \ {giH})/ ∼(c,d)

∣∣. �

We now see that Proposition 3.1 is a special case of Theorem 3.7, as
∣∣G/ ∼(c,d)

∣∣ and∣∣(G \ {giH})/ ∼(c,d)

∣∣ can only be 1 or 2.
Next we present a simple lemma that describes d with specific Hp(d).

Lemma 3.8. For d < p − 1, where p is prime, there exists a, b ∈ Z>0 coprime such that
d = (ap+ b)/(a+ b). Furthermore, a, b are unique, and a+ b = (p− 1)/Hp(d).

Proof. Take a = (d− 1)/gcd(p− d, d− 1), b = (p− d)/gcd(p− d, d− 1), we get

ap+ b

a+ b
=
p(d− 1)/gcd(p− d, d− 1) + (p− d)/gcd(p− d, d− 1)

(d− 1)/gcd(p− d, d− 1) + (p− d)/gcd(p− d, d− 1)

=
dp− p+ p− d

p− 1

=d

. a and b are coprime, and a+ b = (p− 1)/gcd(p− d, d− 1) = (p− 1)/Hp(d).
Now suppose d = (cp+d)/(c+d) for some c, d ∈ Z>0 coprime. We then have (c+d)(ap+

b) = (a + b)(cp + d), which yields ad = bc. Since a is coprime to b, and c is coprime to d,



VALUE SET AND PERIODIC POINTS OF TRINOMIALS cxd + x+ a OVER Fp 5

anything on the right contributing to factors of d have to come from b, so d | b, and similarly
a | c. By a symmetric argument we get b | d and c | a, which gives us equality in Z>0. �

With this lemma, when we want to find d with a specific Hp(d), we can just compute
k = (p− 1)/Hp(d), and take d = (ap+ (k− a))/k, where 1 ≤ a ≤ k− 1 and a is coprime to
k − a.

3.2. Periodic points.

Due to the connection between functional graphs and periodic points as described in the
background section, we will mostly study properties of the functional graph.

Lemma 3.9. f(x) ∈ Fp[x] is a bijection if and only if every element of Fp is a periodic
point of f .

Proof. Suppose f(x) ∈ Fp[x] is a bijection. Consider the functional graph of f , every vertex
has degree 2 because it is the image of 1 element. Therefore the functional graph must be
a union of directed cycles and loops, which implies that all elements are periodic.

Now suppose every element of Fp is a periodic point of f . Then #Vf = p, and f(x) ∈ Fp[x]
must be a bijection by counting. �

Corollary 3.10. If every element of Fp is a periodic point of f(x) = cxd + x, then every

element of Fp is a periodic point of f(x) = cxd + x+ 1. �

We focus on the functional graph of f(x) = cxd+x. By Lemma 3.2, we know that f also
gives a mapping between cosets, sometimes excluding a coset that maps to 0.

Proposition 3.11. Let f(x) = cxd + x. If there exists i such that i(d − 1) ≡ logg(−1/c)

mod (p−1), then the functional graph of f on F∗p \giH is a covering graph of the functional

graph of the mapping that f induces on G \ {giH}. Otherwise, the functional graph of f on
F∗p is a covering graph of the functional graph of the mapping that f induces on G.

Proof. First suppose there is no i such that i(d − 1) ≡ logg(−1/c) mod (p − 1), which

implies cgi(d−1) + 1 6= 0 for all i. Then f indeed induces a mapping on G. Denote the
functional graph of f on F∗p by C and that on G by G′. Define the mapping ϕ : C → G′ by
ϕ(x) = xH. We claim this is a covering map. Surjectivity is clear. Let g be a generator of

F∗p, let x ∈ giH. f(x) = (cgi(d−1)+1)x ∈ (cgi(d−1)+1)giH, so ϕ(f(x)) = (cgi(d−1)+1)giH =

f(giH) = f(ϕ(x)). For the edge x to f(x) in C, we have ϕ(x) to ϕ(f(x)) is also an edge in
G′. We see that ϕ preserves outgoing edges. On the other hand, for any y ∈ Fp such that
f(y) = x, by Lemma 3.2, f maps yH bijectively to xH, so there is exactly one element
y ∈ yH such that f(y) = x. We see that ϕ preserves incoming edges as well. ϕ is a local
graph isomorphism and therefore a covering map.

If there exists i such that i(d − 1) ≡ logg(−1/c) mod (p − 1), then the same proof as

above goes through as long as we exclude giH, since cgj(d−1) + 1 6= 0 for all j 6= i. �

Corollary 3.12. The cycle lengths that appear in the functional graph of f(x) = cxd + x
are multiples of that of the functional graph of the mapping that f(x) = cxd + x induces on
G.
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Proof. There is exactly one cycle or loop in each connected component of functional graphs.
By the locally isomorphic property of covering graphs, degrees are preserved by covering
maps, and it follows that every cycle of a covering graph is the preimage of a cycle or loop
under a covering map. The corollary then follows from Proposition 3.11 and Proposition
1 in [Hli10], which states that preimage of a cycle Cn under a covering map consists of a
collection of disjoint cycles whose lengths are divisible by n. �

We close by showing an example of Proposition 3.11. Figure 1 is a covering graph of
figure 2.

Figure 1 Functional graph of
145x137 + x over F∗389.

Figure 2 Functional graph of
145x137 + x over
G = F∗389/H.

4. Future Directions

4.1. Uniform distribution of value set.

One necessary condition for a pseudorandom generator is that it should have uniform
distribution. We first present a simple lemma to describe an elementary property of the
distribution of f(x) = cxd + x ∈ Fp[x].

Lemma 4.1. For f(x) = cxd+x ∈ Fp[x], if d and p are odd, then |{x | 1 ≤ f(x) ≤ (p− 1)/2}| =
|{x | (p− 1)/2 + 1 ≤ f(x) ≤ (p− 1)}|.
Proof. If d and p are odd, then Hp(d) is even, and by Lemma 3.2, the value set of f is a
union of cosets of H. For any element x ∈ H, −x is also in H, because the order of x is even.
For any element kx ∈ kH, −kx is also in kH, because −1 is in H. Therefore, multiplication
by −1 is a bijection between {x | 1 ≤ f(x) ≤ (p − 1)/2} and {x | (p − 1)/2 + 1 ≤ f(x) ≤
(p− 1)}. �
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This lemma could be generalized to other divisors of Hp(d), and give us some information

about how the value set of f(x) = cxd + x is distributed. We conjecture that the value
set of f(x) = cxd + x ∈ Fp[x] is “well-distributed” as p grows large. To properly state
“well-distributed”, we use some notation from the theory of uniform distribution modulo
one as in [KN74].

Definition 4.2 ([KN74]). Let x1, . . . , xN be a finite sequence of real numbers, A([α, β);N) =
|{xi ∈ [α, β) | i ≤ N}|. The number

DN = DN (x1, . . . , xN ) = sup
0≤α<β≤1

∣∣∣∣A([α, β);N)

N
− (β − α)

∣∣∣∣
is called the discrepancy of the given sequence.

Using this language, our conjecture could then be formulated as followed:

Conjecture 4.3. For f(x) = cxd + x ∈ Fp, consider C = {x ∈ Fp | f(x) 6= 0}, denote its
cardinality N . Construct the sequence ω1, . . . , ωN , where ωi = f(xi)/p for xi ∈ C. Then
DN → 0 as p→∞.

We exclude 0 because by Lemma 3.2, sometimes a coset of H maps to 0, which is unde-
sirable. We show some numerical evidence of this conjecture and its counterpart including
0. We computed an upperbound of DN as given by Theorem 2.5 of [KN74] for p up to 349.

Figure 3 An upperbound for
discrepancy for sequence
ω1, . . . , ωN .

Figure 4 An upperbound for
discrepancy for sequence
f(0)/p, f(1)/p, . . . , f(p−
1)/p.

4.2. “Star graphs”: cxd + x+ 1 for cxd + x with a coset of H mapping to 0.

One interesting thing that happens when a coset of H maps to 0 is that, since there is a
degree preserving bijection from the functional graph of cxd + x to that of cxd + x + 1 by
taking x to x + 1, 1 is an “attracting point” in the functional graph of cxd + x + 1 when
Hp(d) is large. We illustrate this by an example:
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Figure 5 Functional graph of
148x85 + x over F337.

Figure 6 Functional graph of
148x85 + x + 1 over F337.

The connected component containing 1 of the functional graph of cxd + x + 1 in this
case looks like a star, so we call functional graphs of such cxd + x+ 1 “star graphs” in this
discussion. It should not be confused with stars in graph theory.

For each prime p in [10, 500], we chose d randomly, and for each c such that cxd + x has
a coset of H mapping to 0, we counted the number of cycles in the functional graph of
cxd + x + 1. We compare that with the average number of cycles in all trinomials of the
form cxd + x+ a for each p and d plotted against Hp(d):

Figure 7 Number of cycles vs
Hp(d) for random
samples of “star graphs”.

Figure 8 Average number of
cycles vs Hp(d) for every
p and d.
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It appears that the number of cycles in “star graphs” decreases as Hp(d) increases, and
the opposite happens in the average case. Since every connected component has one cycle
in it, and the vertex 1 in “star graphs” have in degree Hp(d) + 1, we expect to see fewer
connected components, and therefore fewer cycles, as Hp(d) increases.

4.3. Lower bound on #Vf .

As shown in the proof of Theorem 3.7, f(giH) = f(gjH) if and only if (cgi(d−1) +

1)/(cgj(d−1) + 1) ∈ gj−iH, which becomes an increasingly harsh condition on c if we want
multiple cosets of H to have the same image under f . In the case of Proposition 3.1, it
boils down to a bivariate polynomial 1− c2 = a2, which has p− sin(pπ/2) roots by [AH18].
We hope that when Hp(d) is small, the collection of conditions that c has to satisfy to make
many cosets of H to have the same image under f is too restrictive, which could potentially
yield a lower bound on #Vf .

4.4. Generalization.

Most of the results could be generalized to trinomials of the form cxd + bx+ a, yielding
a slightly larger family of examples.
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[Hli10] Petr Hliněný. 20 years of Negami’s planar cover conjecture. Graphs Combin., 26(4):525–536, 2010.
[KN74] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Pure and Applied Mathematics.

Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.


	1. Introduction
	2. Background
	3. Results
	3.1. Value set
	3.2. Periodic points

	4. Future Directions
	4.1. Uniform distribution of value set
	4.2. ``Star graphs": cxd+x+1 for cxd+x with a coset of H mapping to 0
	4.3. Lower bound on #Vf
	4.4. Generalization

	Acknowledgement
	References

