The distribution of short orbits of singular moduli

Annika Mauro, Tanis Nielsen

Texas A\&M
July 27, 2021

Outline

（1）Background and Definitions
（2）Main Result
（3）Proof outline

The j-function

Definition

The j-function is defined by

$$
j(z)=\frac{\left(1+240 \sum_{n=1}^{\infty} \sum_{m \mid n} m^{3} q^{n}\right)^{3}}{q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}}, \quad q:=e(z)=e^{2 \pi i z}
$$

It has the the Fourier expansion

$$
j(z)=\sum_{m=0}^{1} a(-m) q^{-m}+\sum_{m=1}^{\infty} a(m) q^{m}
$$

where $a(-1)=1$, and $a(0)=744$.

Modular functions

$j(z)$ is a modular function for $S L_{2}(\mathbb{Z})$, that is:

- j is meromorphic on \mathbb{H}, or complex differentiable on \mathbb{H} except for an isolated set of points.
- j is invariant under precomposition by $S L_{2}(\mathbb{Z})$. So, for $\gamma \in S L_{2}(\mathbb{Z}), j(\gamma(z))=j(z)$.

Fundamental domain of $S L_{2}(\mathbb{Z})$

- The fundamental domain of $S L_{2}(\mathbb{Z})$ acting on \mathbb{H} is the region of \mathbb{H} that contains exactly one point in each orbit of each element of \mathbb{H}. The canonical fundamental domain \mathcal{F} is shaded here.

Quadratic forms

Definition

A primitive positive definite integral binary quadratic form is

$$
\begin{aligned}
& Q(x, y)=a x^{2}+b x y+c y^{2} \text { with } a, b, c \in \mathbb{Z}, a>0 \\
& \operatorname{gcd}(a, b, c)=1
\end{aligned}
$$

- Let $d=b^{2}-4 a c<0$ be the discriminant of Q.
- The root of $Q(x, 1)$ in \mathbb{H} is $\tau_{[Q]}=\frac{-b+\sqrt{d}}{2 a}$.

Definition

Let Q_{d} be the set of primitive positive definite integral binary quadratic forms of discriminant $d<0$.

Action of $S L_{2}(\mathbb{Z})$ on Q_{d}

- The group $S L_{2}(\mathbb{Z})$ acts on Q_{d} by substitution, that is if $\gamma=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$, then $Q(x, y) \circ \gamma=Q(p x+q y, r x+s y)$.
- We can form the quotient $G_{d}=Q_{d} / S L_{2}(\mathbb{Z})$.
- Gauss showed that G_{d} is a finite group of order $h(d)$ called the class group of d.
- By Siegel, we know that $h(d) \rightarrow \infty$ as $|d| \rightarrow \infty$.
- Let $G_{d}=\left\{\left[Q_{1}\right], \ldots,\left[Q_{h(d)}\right]\right\}$.
- Define $\mathcal{Q}_{d}^{\text {red }}=\left\{Q_{1}, \cdots, Q_{h(d)}\right\}$ to be a complete set of reduced forms.

Heegner points

Definition

Let $\Lambda_{d}=\left\{\tau_{\left[Q_{1}\right]}, \ldots, \tau_{\left[Q_{h(d)}\right]}\right\}$ be the roots associated with the class representatives chosen earlier. These are called Heegner points.

- G_{d} has a simple transitive group action on Λ_{d} denoted by τ^{σ} for $\sigma \in G_{d}, \tau \in \Lambda_{d}$.
- This means that for any $\tau \in \Lambda_{d}, G_{d} \tau=\Lambda_{d}$.

Singular moduli

Definition

Let S_{d} be the set of complex numbers $\left\{j\left(\tau_{Q_{1}}\right), \ldots, j\left(\tau_{Q_{h(d)}}\right)\right\}$. These are called singular moduli.

- Singular moduli are algebraic numbers, which means they are the root of some polynomial with rational coefficients.

Group characters

Definition

A character of a finite abelian group G is a homomorphism $\chi: G \rightarrow S^{1}$, the complex unit circle.

Definition

The dual group or character group of G is the group of characters of G under pointwise multiplication, written \widehat{G}.

Definition

Let $H<G$ be a subgroup of a finite abelian group G. Then $H^{\perp}:=\left\{\chi \in \widehat{G}:\left.\chi\right|_{H}=1\right\}$ be the group of characters of G that restrict to 1 on H.

Example: Character Table of C_{4}

C_{4}, the cyclic group of order 4 , has this character table:

	1	a	a^{2}	a^{3}
χ_{0}	1	1	1	1
χ_{1}	1	-1	1	-1
χ_{2}	1	i	-1	-i
χ_{3}	1	-i	-1	i

You can see that $\chi(x) \chi(y)=\chi(x y)$. Note that the sum of every row besides the trivial χ_{0} is 0 . This is true for every character group.

Big O notation

Definition

Given two functions $f(x)$ and $g(x)$, we write $f(x)=O_{\epsilon}(g(x))$ if $|f(x)| \leq C g(x)$ for some constant $C>0$ depending only on ϵ.

Traces of singular moduli

Fix some $\tau \in \Lambda_{d}$.

Definition

The trace of a modular function f for some d is

$$
\operatorname{Tr}_{d}(f)=\sum_{\sigma \in G_{d}} f\left(\tau^{\sigma}\right)
$$

- $\operatorname{Tr}_{d}(j)$ is an algebraic integer, which means it is the root of some monic polynomial with integer coefficients.

A theorem of Duke

Theorem (Duke, 2006)

$$
\frac{1}{h(d)}\left(\operatorname{Tr}_{d}(j)-\sum_{\sigma \in G_{d}, \operatorname{Im}\left(\tau^{\sigma}\right)>1} e\left(-\tau^{\sigma}\right)\right) \rightarrow 720
$$

as $|d| \rightarrow \infty$ through $d \equiv 0,1(\bmod 4)$.

Averages of sub-orbits of singular moduli

Definition

For a subgroup $H_{d}<G_{d}$, the average of the H_{d}-orbit is

$$
\operatorname{Av}_{H_{d}}(j, \tau)=\frac{1}{\left|H_{d}\right|} \sum_{\sigma \in H_{d}} j\left(\tau^{\sigma}\right)
$$

Goal

We want to study the distribution of $\operatorname{Av}_{H_{d}}(j)$ as $|d| \rightarrow \infty$.

Main Result

Theorem

Given a subgroup $H_{d}<G_{d}$ and a Heegner point $\tau=\tau_{\left[Q_{\tau}\right]} \in \Lambda_{d}$ there exists $0<\delta<1 / 2$ such that

$$
\operatorname{Av}_{H_{d}}(j, \tau)=M(\bar{\chi}, d, \tau)+720+O_{\epsilon}\left(\left|H_{d}\right|^{-1}|d|^{\delta+\epsilon}\right)
$$

as $|d| \rightarrow \infty$ where

$$
M(\chi, d, \tau):=\frac{\chi\left(\left[Q_{\tau}\right]\right)^{-1}}{h(d)} \sum_{m=0}^{1} \sum_{\substack{Q \in \mathcal{Q}_{d}^{\text {red }} \\ y_{Q}>\frac{2}{\sqrt{3}}+|d|^{\delta-\frac{1}{2}}}} C_{d}(Q) a(-m) e\left(-m \tau_{Q}\right)
$$

and $C_{d}(Q):=\sum_{\chi \in H_{d}^{\perp}} \bar{\chi}(Q)$.

The exponent δ

Remark

Assuming the Lindelöf hypothesis for various L-functions, we can take $\delta=9 / 20$.

Corollary: Good sequences of subgroups H_{d}

Corollary

Let $A>\delta$. If H_{d} satisfies $\left|H_{d}\right| \geq|d|^{A}$, then

$$
\operatorname{Av}_{H_{d}}(j, \tau)-M(\chi, d, \tau) \rightarrow 720
$$

as $|d| \rightarrow \infty$.

By Siegel's theorem, $\left|G_{d}\right| \gg_{\epsilon}|d|^{1 / 2-\epsilon}$.

Poisson summation

Let $H<G$ be a subgroup of a finite abelian group G.
Let $H^{\perp}:=\left\{\chi \in \widehat{G}:\left.\chi\right|_{H}=1\right\}$ be the group of characters of G that restrict to 1 on H.
The Poisson summation formula states that for $f: G \rightarrow \mathbb{C}$,

$$
\frac{1}{|H|} \sum_{h \in H} f(h)=\frac{1}{|G|} \sum_{\chi \in H^{\perp}} \sum_{g \in G} f(g) \bar{\chi}(g) .
$$

Use of Poisson Summation

By applying the Poisson summation formula to j, we can get

$$
\frac{1}{\left|H_{d}\right|} \sum_{\sigma \in H_{d}} j\left(\tau^{\sigma}\right)=\frac{1}{h(d)} \sum_{\chi \in H_{d}^{\frac{1}{d}}} \sum_{\sigma \in G_{d}} \bar{\chi}(\sigma) j\left(\tau^{\sigma}\right) .
$$

Note that the left hand side of this equation is $\operatorname{Av}_{H_{d}}(j)$.

Twisted Traces

We call

$$
\operatorname{Tr}_{\chi, d}(j, \tau):=\sum_{\sigma \in G_{d}} \chi(\sigma) j\left(\tau^{\sigma}\right)
$$

a twisted trace. So we have that

$$
\operatorname{Av}_{H_{d}}(j, \tau)=\frac{1}{h(d)} \sum_{\chi \in H_{d}^{\perp}} \operatorname{Tr}_{\bar{\chi}, d}(j, \tau)
$$

We will first focus on analysing the twisted trace.

Background

Definition

Given two $\mathrm{SL}_{2}(\mathbb{Z})$-invariant functions $\phi_{1}, \phi_{2}: \mathbb{H} \rightarrow \mathbb{C}$, we define the Petersson inner product by

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle:=\int_{\mathcal{F}} \phi_{1}(z) \overline{\phi_{2}}(z) \frac{d x d y}{y^{2}}
$$

The corresponding L_{2}-norm is given by $\|\phi\|_{2}:=\sqrt{\langle\phi, \phi\rangle}$.

Definition

Let $\mathcal{D}\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}\right)$ be the space of $\mathrm{SL}_{2}(\mathbb{Z})$-invariant functions $\phi: \mathbb{H} \rightarrow \mathbb{C}$ such that ϕ and $\Delta \phi$ are both smooth and bounded, where $\Delta:=-y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$ is the hyperbolic Laplacian.

For $A \in \mathbb{Z}^{+}$we let Δ^{A} denote the composition of Δ with itself A-times.

Asymptotics for the Twisted Trace

Proposition

If $\phi \in \mathcal{D}\left(\mathrm{SL}_{2}(\mathbb{Z}) / \mathbb{H}\right)$, there is an absolute constant $0<\delta^{\prime}<1 / 2$ such that

$$
\operatorname{Tr}_{\chi, d}(\phi, \tau)=C(\chi, d) \frac{3}{\pi}\langle\phi, 1\rangle+O_{\epsilon}\left(\left\|\Delta^{A} \phi\right\|_{2}|d|^{-\delta^{\prime}+\epsilon}\right)
$$

for all sufficiently large $A \in \mathbb{Z}^{+}$where

$$
C(\chi, d):=\frac{1}{h(d)} \sum_{\sigma \in G_{d}} \chi(\sigma)
$$

Regularizing the j function

Let $1>\eta>0$. Define

$$
j_{\eta}(z):=\sum_{\gamma \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} g_{\eta}(\gamma z)
$$

where

$$
\begin{aligned}
g_{\eta}(z):= & \sum_{m=0}^{1} a(-m) \psi_{m, \eta}(\operatorname{Im}(z)) e(-m z), \\
& \psi_{m, \eta}(y):=\phi_{0}\left(\frac{y-\frac{2}{\sqrt{3}}}{\eta}\right)
\end{aligned}
$$

and $\phi_{0}(t)$ is a C^{∞} function with

$$
\phi_{0}(t)=\left\{\begin{array}{lll}
0 & \text { if } \quad t \leq 0 \\
1 & \text { if } \quad t \geq 1
\end{array}\right.
$$

Regularizing the j function

It can be shown that for

$$
j_{\eta}^{\mathrm{reg}}:=j-j_{\eta},
$$

$j_{\eta}^{\text {reg }} \in \mathcal{D}\left(\mathrm{SL}_{2}(\mathbb{Z}) / \mathbb{H}\right)$. This means we can apply the earlier proposition.

Decomposing the trace

The twisted trace is linear, so:

$$
\operatorname{Tr}_{\chi, d}(j, \tau)=\operatorname{Tr}_{\chi, d}\left(j_{\eta}^{\mathrm{reg}}, \tau\right)+\operatorname{Tr}_{\chi, d}\left(j_{\eta}, \tau\right)
$$

Then by the proposition,

$$
\begin{aligned}
\operatorname{Tr}_{\chi, d}(j, \tau)= & \operatorname{Tr}_{\chi, d}\left(j_{\eta}, \tau\right)+C(\chi, d) \frac{3}{\pi}\left\langle j_{\eta}^{\mathrm{reg}}, 1\right\rangle \\
& +O_{\epsilon}\left(\left\|\Delta^{A} j_{\eta}^{\mathrm{reg}}\right\|_{2}|d|^{-\delta^{\prime}+\epsilon}\right)
\end{aligned}
$$

We can directly calculate that $\frac{3}{\pi}\left\langle j_{\eta}^{\text {reg }}, 1\right\rangle=720$.

Dependence on choice of Heegner point

Lemma

Let $\tau=\tau_{\left[Q_{\tau}\right]} \in \Lambda_{d}$. Then

$$
\operatorname{Tr}_{\chi, d}\left(j_{\eta}, \tau\right)=\chi\left(\left[Q_{\tau}\right]\right)^{-1} \sum_{Q \in \mathcal{Q}_{d}^{\mathrm{red}}} \chi(Q) j_{\eta}\left(\tau_{Q}\right)
$$

Further decomposing $\operatorname{Tr}_{\chi, d}\left(j_{\eta}, \tau\right)$

We can further decompose

$$
\sum_{Q \in \mathcal{Q}_{d}^{\mathrm{red}}} \chi(Q) j_{\eta}\left(\tau_{Q}\right)=\mathrm{T}_{\chi, d, 1}+\mathrm{T}_{\chi, d, 2}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\chi, d, 1}:=\sum_{\substack{Q \in \mathcal{Q}_{d}^{\text {red }} \\
y_{Q}>\frac{2}{\sqrt{3}}+\eta}} \chi(Q) \sum_{m=0}^{1} a(-m) e\left(-m \tau_{Q}\right) \\
& \mathrm{T}_{\chi, d, 2}:=\sum_{\substack{Q \in \mathcal{Q}_{d}^{\text {red }} \\
\frac{\sqrt{2}}{3}<y_{Q} \leq \frac{2}{\sqrt{3}}+\eta}} \chi(Q) \sum_{m=0}^{1} a(-m) e\left(-m \tau_{Q}\right) .
\end{aligned}
$$

More bounds

Lemma

There is a $0<\delta^{\prime \prime}<1 / 2$ such that

$$
\mathrm{T}_{\chi, d, 2}=O(\eta h(d))+O_{\epsilon}\left(\eta^{-A^{\prime}}|d|^{\delta^{\prime \prime}+\epsilon}\right) .
$$

for all sufficiently large $A^{\prime} \in \mathbb{Z}^{+}$.

Lemma

We have

$$
\left\|\Delta^{A} j_{\eta}^{\mathrm{reg}}\right\|_{2} \ll \eta^{-2 A}
$$

for all $A \in \mathbb{Z}^{+}$.

Putting it all together

Using the previous facts, we have

$$
\begin{aligned}
\operatorname{Tr}_{\chi, d}(j, \tau)= & C(\chi, d) 720+\chi\left(\left[Q_{\tau}\right]\right)^{-1} \mathrm{~T}_{\chi, d, 1}+O_{\epsilon}\left(\eta^{-2 A}|d|^{\delta^{\prime}+\epsilon}\right) \\
& +O(\eta h(d))+O_{\epsilon}\left(\eta^{-A^{\prime}}|d|^{\delta^{\prime \prime}+\epsilon}\right)
\end{aligned}
$$

Calculating the average

Using the upper bound

$$
h(d) \ll|d|^{1 / 2+\epsilon}
$$

and orthogonality of characters we get

$$
\begin{aligned}
\operatorname{Av}_{H_{d}}(j, \tau)= & \frac{1}{h(d)} \sum_{\chi \in H_{d}^{\perp}} \operatorname{Tr}_{\bar{\chi}, d}(j, \tau) \\
= & M(\bar{\chi}, d, \tau)+720+O_{\epsilon}\left(\left|H_{d}\right|^{-1} \eta^{-2 A}|d|^{\delta^{\prime}+\epsilon}\right) \\
& +O_{\epsilon}\left(\left|H_{d}\right|^{-1} \eta|d|^{1 / 2+\epsilon}\right) \quad+O_{\epsilon}\left(\left|H_{d}\right|^{-1} \eta^{-A^{\prime}}|d|^{\delta^{\prime \prime}+\epsilon}\right)
\end{aligned}
$$

Final Optimizations

Choosing $\eta=|d|^{-b}$ and optimizing b appropriately, we get that there exists $0<\delta<1 / 2$ such that

$$
\operatorname{Av}_{H_{d}}(j, \tau)=M(\bar{\chi}, d, \tau)+720+O_{\epsilon}\left(\left|H_{d}\right|^{-1}|d|^{\delta+\epsilon}\right)
$$

as $|d| \rightarrow \infty$.

Next Steps

- As L-function bounds are improved, a numerical value of δ can be found and improved.
- Investigate sequences of H_{d} as $|d| \rightarrow \infty$ that may have combinatorial significance.
- Look into certain choices of χ which allow $\operatorname{Tr}_{\chi, d}(j, \tau)$ to describe Fourier coefficients for modular forms.

Thank you for your time, and thank you to Dr. Masri and the organizers of this REU!

