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Abstract

We study the representation theory that leads into Markov processes to culminate in
the Markov process of the "push-block" model, which is defined by its interlacing
property, as well as the space-like paths on which the particle system exists. Using
previous work of Cerenzia ’18 and Zhou ’21, we define whether the Markov process
of the symplectic group Sp2n is a determinantal point process, and if it is, calculate
the correlation kernel of such group along space-like paths.

1 Background

1.1 Representation Theory

Let a Lie Algebra g be a vector space with lie bracket [· , · ] : g×g � g such that g
preserves the characteristics of skew-symmetry, bi-linearity, and the Jacobi identity.
Let the representation ϕ of a lie algebra g be a homomorphism ϕ : g � g`(V ) such
that V is a finite vector space over C. Let an irreducible representation be a nonzero
representation with no subrepresentation.

Let Sp2n be the sympletic lie group where

Sp2n =

(
A B
C D

)
(1)

where A, B, C, and D are n×n matrices where A =−DT , B = BT , and C =CT . The
set of irreducible representations of Sp2n is parametrized by{
(λ1, ...,λn) : λ1 ≥ ...≥ λn ≥ 0

}
, for every λ = (λ1, ...λn) is mapped onto

x = (x1, ...,xn), where x1 > ...n≥ 0 and xi = λi +n− i.
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1.2 Markov Processes

In the case of a Markov chain, let Xt , t ∈
{

0,1,2, ..., t
}

denote a position at time t.
Then, Xt+1 only depends on Xt , not

{
Xt−1, ...,X0

}
. A Markov process is then defined

as the continuous time version of a Markov chain.

Definition 1.1 Over a discrete setX=Z≥0×Z+, if P(x1, ...,xn) = det[K(xi,x j]1≤i, j≤n

for all x1, ...,xn ∈X for some function K on X×X, then the process is a determi-
nantal point process.

Theorem 1.1 [Cerenzia ’15, Cerenzia-Kuan ’16] A Markov process at a fixed time
t is determinantal.

1.3 The Push-Block Model

Figure 1: An illustration of the "push-block" model [Cerenzia ’18]

The representation theory and Markov processes are joined together in the "push-
block" model. Figure 1 illustrates the Markov process of a "push-block" model,
where particles exist on a state space with reflecting barriers where Z≥0×Z+. The
state space that the particle system is on observes an interlacing property, where
X (K+1)

i+1 < X (K)
i ≤ X (K+1)

i for odd values of K, and where X (K+1)
i+1 ≤ X (K)

i < X (K+1)
i

for even values of K. The particles X (2n)
n < ... < X (2n)

1 come from representations of
Sp2n while the particles X (2n−1)

n < ... < X (2n−1)
1 come from odd symplectic groups.

The heaviest particles lie at the bottom of the figure. Particles attempt to jump or
push forward, but some are blocked from moving backwards as this growth continues
by means of Markov processes.
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2 The Problem

2.1 Open Problem

Write K(· , ·) for (xi,ni, ti) for 1≤ i≤ K and where t1 ≤ ...≤ tK and n1 ≥ ...≥ nK .

2.2 Correlation Kernel

K(t)((s1,n1),(s2,n2)) = 1(n1≥n2)·
2an1+1/2

π

∫ 1
−1 Js1,an1

(x)Js2,an2
(x)·(1− x)rn1−rn1+dr1

(1+x)1/2dx+ 2an1+1/2

π

∫ 1
−1
∮ et(x−1)

et(x−1) Js1,an1
(x)Js2,an2

(u)· (1−x)rn1+an1 (1+x)1/2

(1−u)rn1 (x−u) dudx

2.3 Parameters

(si,ni) ∈ Z≥0×Z+

an = 1/2 if n is even
an =−1/2 if n is odd

rn =
⌊

n+1
2

⌋
, represents the number of particles on the nth level

Js,±1/2(x) represents a Jacobi polynomial

∫ 1
−1 Js1,±1/2(x)Js2,±1/2(x)(1− x)±1/2(1+ x)1/2dx

3 Our Progress

3.1 Cerenzia ’18

Cerenzia’s definitions provide the tools needed to find the correlation kernel at a
given time. (2) provides Cerenzia’s definition for τ at level n,a given that time
t2n−1/2+a
i < t2n−1/2+a

j , while (3) provides his definition for φ , where t2n1−1/2+a1
b1

>

t2n2−1/2+a2
b2

and where n1 ≤ n2.

τ
n,a

t2n−1/2+a
j ,t2n−1/2+a

i

= τ
n,a

t2n−1/2+a
i ,t2n−1/2+a

i−1

∗ ...∗ τ
n,a

t2n−1/2+a
j ,t2n−1/2+a

j−1

(2)
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φ

t
b
2n1−1/2+a1
1

,t
b
2n2−1/2+a2
2 = τ

n2,a2

t2n2+a2+1/2
c(2n2+a2+1/2),t

2n2
b2

∗φ
n2,a2
y ∗τ

y
ty
c(y),t0
∗ ...∗φ

m
n1,a1
∗τ

n1,a1

t2n1+a1+1/2
b1

,tn1,a1
0

(3)
In (3), y is the level below n2,a2 where y = n2,−1/2 if a2 = 1/2, while y = n2−
1,1/2 if a2 =−1/2. In addition, m is the level above n1,a1, where m = n1+1,−1/2
if a1 = 1/2, while m = n1,1/2 if a1 =−1/2.

3.2 Zhou ’21

Denote the particle positions at time t by Xn,a
K , let c(i) denote arbitrary integers,

and let a = ±1/2. Let φ
N,+
N,− (· , ·) and φ

N,−
N−1,+(· , ·) be functions, and let τ

K,±
s,t (· , ·)

be a function where the time depends on the level. In addition, we have times t, where

0 = t2N−1/2+a
0 ≤ ...≤ t2N−1/2+a

c(2N−1/2+a)

0 = t2N−1/2+a−1
0 ≤ ...≤ t2N−1/2+a−1

c(2N−1/2+a−1)

0 = t2N−1/2+a−2
0 ≤ ...≤ t2N−1/2+a−2

c(2N−1/2+a−2)
...
0 = t1

0 ≤ ...≤ t1
c(1)

Theorem 2.1 [Zhou ’21] If a =−1/2 and the probability is of the form

const×∏
N
n=1[det[φ n,−

n−1,+(x
n,−
` (t2n−1

c(2n−1)),x
n−1,+
K (t2n−2

0 ))]1≤K,`≤n

×∏
c(2n−1)
b=1 det[τn,−

t2n−1
b ,t2n−1

b−1
(xn,−

` (t2n−1
b ),xn,−

K (t2n−1
b−1 ))]1≤K,`≤n

×det[φ n,+
n,− (x

n,+
` (t2n

c(2n)),x
n,−
K (t2n−1

0 ))]1≤K,`≤n

×∏
c(2n)
b=1 det[τn,+

t2n
b ,t2n

b−1
(xn,+

` (t2n
b ),xn,+

K (t2n
b−1))]1≤K,`≤n]

×det[ΨN,a
N−`(x

2N−1/2+a
K (t2N−1/2+a

0 ))]1≤K,`≤N ,

then the final determinant of φ
N,+
N,− does not appear and neither does the product of

determinants of τN,+, and so the process is determinantal.
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3.3 Work of Cerenzia ’18 in Framework of Zhou ’21

In order to calculate the correlation kernel, we combine the definitions from Ceren-
zia’s work into the framework of Zhou, so that we can calculate the kernel along
space-like paths rather than at a fixed time. Such work resulted in

const×∏
N
n=1[det[φ n1,−

n1−1,+(x
n,−
` (t2n1−1

j ),xn1−1,+
K (t2n1−1

i ))]1≤K,`≤n

×∏
c(2n1−1)
b1=1 det[τn1,−

t2n1−1
b1

,t2n1−1
b1−1

(xn1,−
` (t2n1−1

b1
),xn1,−

K (t2n1−1
b1−1 ))]1≤K,`≤n

×det[φ n2,+
n2,− (x

n2,+
` (t2n2

j ),xn2,−
K (t2n2−1

i ))]1≤K,`≤n

×∏
c(2n2)
b2=1 det[τn2,+

t2n2
b2

,t2n2
b2−1

(xn2,+
` (t2n2

b2
),xn2,+

K (t2n2
b2−1))]1≤K,`≤n]

×det[ΨN,a
N−`(x

2N−1/2+a
K (t2N−1/2+a

i ))]1≤K,`≤N

3.4 Equation 33 [Cerenzia ’18]

Cerenzia provides the definition for an inner product in respect to a normalized
weight as

〈 f ,g〉a :=
2a+(1/2)

π

∫
R

f (x)g(x)w(a,1/2)(x)dx (4)

In applying (4) to our work, we used a generalized form of the τ terms from subsec-
tion 3.2. We renamed τ

n,−
t2n−1
b ,t2n−1

b−1
and τ

n,+
t2n
b ,t2n

b−1
with the generalized form of τ

n,a
t1,t2(x,y).

We then used the following definition

τ
n,a
t1,t2(x,y) =

〈
Jx,a,Jy,aϕ

t1−t2
〉

a
(5)

where f = Jx,a, g = Jy,aϕ t1−t2 , and ϕ t1,t2 → ϕ t(x) = et(x−1), in combination with (4)
to achieve the following result.
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2a+1/2

π

∫
R

Jx,a(x)Jy,aet(x−1)(x)w(a,1/2)(x)dx (6)

3.5 Equation 34 [Cerenzia ’18]

Though the following equation was not part of our completed work, we include the
following definition as its intended use will be addressed in our final discussion.

T (x) =
∞

∑
k=0
〈Jk,an ,T 〉anJk,an(x) (7)

3.6 Lemma 2.2 [Borodin-Kuan ’11]

In order to simplify the integration in Equation 33 [Cerenzia ’18] (6), Lemma 2.2
is required. In [Borodin-Kuan ’11], Lemma 2.2 is stated and proved for a =±1/2,
b =−1/2, −1≤ ζ ≤ 1, with Test Function T∈C1[-1,1], then:

T (ζ ) =
∞

∑
k=0

∫ 1

−1

Ja,−1/2
k (x)Ja,−1/2

k (ζ )

ha,−1/2
k

T (x)(1− x)a(1+ x)−1/2dx (8)

Proving this lemma will require two equations from background text:

h(a,b)k =
πc2

k

W (a,b)(k)
(9)

Where W (a,b)(k) is equal to 0 if k > 0 and a= b=−1/2, 1 if k = 0 and a= b=−1/2,
and 1 if k ≤ 0, a = 1/2 and b =−1/2. [Borodin-Kuan ’11]. The next two equations
are from [Szegö, ’75]:

P(−1/2,−1/2)
n (x) =

1×3×5...(2n−1)
2×4×6...2n

Tn(x) =
1×3×5...(2n−1)

2×4×6...2n
cos(nθ) (10)

The next equation needed is for the mixed variable case:

P(1/2,1/2)
n (x) = 2

1×3×5...(2n+1)
2×4×6...(2n+2)

sin(θ(n+1))
sinθ

(11)

Where P(a,−1/2)
n (x) is equal to our variable Ja,−1/2

k (x) representing a Jacobi Polyno-
mial where both a and b equal -1/2 in (10) and is a mixed case in (11). Combining
these two equations for a case where a = b =−1/2, letting x = cosφ and ζ = cosθ ,

J(−1/2,1/2)
k (x)J(−1/2,1/2)(ζ )

k

h(−1/2,1/2)
k

=
1
π

i f k = 0
2
π

cos(kφ)cos(kθ) i f k > 2 (12)
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Since T is C1, the Fourier series of T converges to T:

T (cos(φ)) = T̂0 + T̂1 cos(φ)+ T̂2 cos(2φ)+ ..., (13)

Where
i f k = 0, T̂k =

1
π

∫
π

0
T (cos(φ))dφ , (14)

i f k > 0, T̂k =
2
π

∫
π

0
T (cos(φ)cos(kφ)dφ (15)

Therefore,

∞

∑
k=0

∫ 1

−1

Ja1−1/2
k (x)Ja1−1/2

k (ζ )

ha1−1/2
k

T (x)(1− x)−1/2(1+ x)−1/2dx (16)

=
1
π

∫
π

0
T (cosφ)dφ +

2
π

∞

∑
k=1

∫
π

0
T (cosφ)cos(kφ)cos(kθ)dθ (17)

= T̂0 + T̂1 cos(φ)+ T̂2 cos(2φ)+ ...,= T (cosφ) = T (ζ ) (18)

For the case where a=1/2, the mixed Jacobi Polynomial from [Szegö, ’75] would be
utilized, and

J(1/2,−1/2)
k (x)J(1/2,−1/2)

k (ζ )

h(1/2,−1/2)
k

=
sin((k+1/2)φ)

sin(φ/2)
sin(θ(k+1/2))

sin(θ/2)
(19)

Then the rest of this part of the proof would follow similarly to the previous case.

3.7 Analog of Lemma 2.2

However, our problem mainly focuses on the case where b = 1/2, and thus we will
need to follow a similar outline for the proof of the analog of Lemma 2.2, where
a =±1/2, and b = 1/2, with slight variations. Instead of expanding T using a cosine
fourier series with a basis of cos(kx), we will use sin(kx) instead to prove our first

case (non-mixed), and apply said expansion into the expression J(a,1/2)
k (x)J(a,1/2)

k (ζ )

h(a,1/2)
k

.

To accomplish this, we will need to know the values of the mixed and non-mixed
Jacobi Polynomials from [Szegö, ’75], and the value of h(a,1/2)

k , which is the same
formula stated in 3.6. For a = b = 1/2, W (a,b)(k) = 2, and for a =−1/2, b = 1/2,
W (a,b)(k) = 1. With the non-mixed and mixed case polynomial equations as follows:

P(1/2,1/2)
n (x) = 2

1×3×5...(2n+1)
2×4×6...(2n+2)

sin(φ(n+1))
sinφ

(20)

P(−1/2,1/2)
n (x) =

1×3×5...(2n−1)
2×4×6...2n

cos((2n+1)(φ/2))
cos((φ/2))

(21)
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Utilizing both these equations for a = 1/2, and again setting x = cosφ and ζ = cosθ ,

J(1/2,1/2)
k (x)J(1/2,1/2)(ζ )

k

h(1/2,1/2)
k

= (
2
π
)(

sin((k+1)φ)
sin(φ)

)(
sin((k+1)θ)

sin(θ)
) (22)

With weight,
w = (1− x)1/2(1+ x)1/2 = sinφ (23)

Now expanding T:

T (cos(φ)) =
∞

∑
k=0

T̂k
sin(kφ)

sinφ
= T̂0 + T̂1

sin(2φ)

sinφ
+ ..., (24)

Where
T̂k =

2
π

∫
π

0
T (cosφ)

sin((k+1)φ)
sinφ

dφ (25)

Therefore

∞

∑
k=0

∫ 1

−1

J1/2,1/2
k (x)J1/2,1/2

k (ζ )

h1/2,1/2
k

T (x)(1− x)1/2(1+ x)1/2dx (26)

=
2
π

∞

∑
k=1

(
sin((k+1)θ)

sinθ

∫
π

0
T (cosφ)

sin((k+1)φ)
sinφ

dφ) (27)

= T̂0 + T̂1
sin(2θ)

sinθ
+ ...,= T (cosθ) = T (ζ ) (28)

Thus proving the case when a = b = 1/2.
When a =−1/2, b = 1/2,

J(−1/2,1/2)
k (x)J(−1/2,1/2)

k (ζ )

h(−1/2,1/2)
k

=
1
π

cos((2n+1)(φ/2))
cos((φ/2))

cos((2n+1)(θ/2))
cos((θ/2))

(29)

Utilizing this expression and a similar method used with previous cases, the rest of
the proof for this case follows.

We are able to use this analog of Lemma 2.2 to simplify the integration in (6) and
properly calculate convolutions of φ and t. We can then use our derived equations to
find these solutions along space-like paths.

3.8 Proposition 4.2

Proposition 4.2 from [Cerenzia ’18] will assist us later on in calculating values of φ

and Ψ. For any (s,n),(t,m) ∈ Z≥0×Z>0 and k ∈ Z, define the functions:

Φ
m
rm−k(t) :=

1
2πi

∮ Jt,αm(w)
E(w)(w−1)rm−k+1dw

(30)
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φ
[n,m)(s, t) :=− 1

2πi

∮ 〈
Js,αn,

Jt,αm(u)(u−1)rn−rm

x−u

〉
αn

du,n < m (31)

Where the contours are positively oriented simple loops around the interval [-1,1] and
contain no zeros of E. If these conditions are met, then the simple point process χ̃w,
which is determined by the push-forward measure ξ̃ w of equation [50] in [Cerenzia
’18], has a determinantal correlation function ρ̃w with kernel:

Kw((s,n),(t,m)) =−Φ
[n,m)(s, t)1(n<m)+

rm

∑
k=1

Ψ
n
rn−k(s)Φ

m
rm−t(t) (32)

ξ̃ w is also determinantal and follows the same conditions as (10).

4 Discussion

Unfortunately, we were unable to come to final results throughout the project. The
following steps have left to be completed. First, using the proof of Lemma 2.2 where
a = −1/2, the result in (6) must be simplified, in which case, (7) would be used
to calculate a summation of polynomials, T (x), which would be used in explicitly
calculating the correlation kernel. Next, Using Proposition 4.2, values for φ and
ψ must be calculated. Using such φ , ψ , and T values, det[ψ]det[T ]det[φ ] can be
determined. If such product is equal to the probability of the form in Theorem 2.1,
and given that (si,ni) is occupied at time ti for 1≤ i≤ k, then we can conclude that
there is an explicit formula for K, which is the correlation kernel itself. From this
point, we would be able to explicitly calculate such correlation kernel.
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