Random Interacting Particle Systems and Central Elements of $U(sp_{2n})$

Ray Shang

Probability and Algebra

Mentored by Professor Jeffrey Kuan

July 26, 2021

- What is $U(sp_{2n})$?
- What is the Random Interacting Particle System?
- One of the interview of the interview
- Methods
- 8 Results

★ ∃ ▶

Image: Image:

Definition: sp_{2n}

 sp_{2n} is the Lie algebra with elements $\begin{pmatrix} A & B \\ C & D \end{pmatrix} | A = -D^T, B = B^T, C = C^T \}$ where A, B, C, D are $n \times n$ matrices, equipped with Lie bracket [X, Y] = XY - YX.

▶ ▲ 문 ▶ ▲ 문

Definition: sp_{2n}

 sp_{2n} is the Lie algebra with elements $\left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} | A = -D^T, B = B^T, C = C^T \right\}$ where A, B, C, D are $n \times n$ matrices, equipped with Lie bracket [X, Y] = XY - YX.

Basis for sp_{2n}

Let $i, j \in \{\pm 1, \dots, \pm n\}$. Let E_{ij} denote the matrix with 1 in the (*ij*)-th entry and 0 everywhere else. Then $F_{ij} = E_{ij} - sgn(ij)E_{-j,-i}$ generate sp_{2n} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Definition: $U(sp_{2n})$

The universal enveloping algebra of sp_{2n} is $U(sp_{2n}) = T(sp_{2n})/\langle X \otimes Y - Y \otimes X - [X, Y] \rangle$, where $T(sp_{2n}) = \mathbb{F} \oplus sp_{2n} \oplus sp_{2n}^{\otimes 2} \oplus sp_{2n}^{\otimes 3} \oplus \cdots$ is the tensor algebra of sp_{2n} .

・ロト・(部ト・モト・モト・ 注

Definition: $U(sp_{2n})$

The universal enveloping algebra of sp_{2n} is $U(sp_{2n}) = T(sp_{2n})/\langle X \otimes Y - Y \otimes X - [X, Y] \rangle$, where $T(sp_{2n}) = \mathbb{F} \oplus sp_{2n} \oplus sp_{2n}^{\otimes 2} \oplus sp_{2n}^{\otimes 3} \oplus \cdots$ is the tensor algebra of sp_{2n} .

The center of $U(sp_{2n})$

The center of $U(sp_{2n})$, denoted $Z(U(sp_{2n}))$, is comprised of all element that commute with all of $U(sp_{2n})$.

《曰》 《問》 《글》 《글》 _ 글

Definition: $U(sp_{2n})$

The universal enveloping algebra of sp_{2n} is $U(sp_{2n}) = T(sp_{2n})/\langle X \otimes Y - Y \otimes X - [X, Y] \rangle$, where $T(sp_{2n}) = \mathbb{F} \oplus sp_{2n} \oplus sp_{2n}^{\otimes 2} \oplus sp_{2n}^{\otimes 3} \oplus \cdots$ is the tensor algebra of sp_{2n} .

The center of $U(sp_{2n})$

The center of $U(sp_{2n})$, denoted $Z(U(sp_{2n}))$, is comprised of all element that commute with all of $U(sp_{2n})$. It is generated by special elements Φ_{2k} , $k \in Z^+$.

Definition

The Interacting Particle System is a Markov Process on the lattice $Z_{\geq 0} \times Z_+$, with the particles denoted as $x_i^{(\ell)}$, where ℓ denotes the "level" and *i* denotes the ordering of the particle on its level.

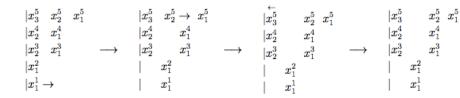
Definition

The Interacting Particle System is a Markov Process on the lattice $Z_{\geq 0} \times Z_+$, with the particles denoted as $x_i^{(\ell)}$, where ℓ denotes the "level" and *i* denotes the position of the particle on its level. The system has the interlacing property: $x_{i+1}^{\ell+1} < x_i^{(\ell)} \leq x_i^{(\ell)+1}$ for ℓ odd, and $x_{i+1}^{\ell+1} \leq x_i^{(\ell)} < x_i^{(\ell+1)}$ for ℓ even.

Definition

The Interacting Particle System is a Markov Process on the lattice $Z_{\geq 0} \times Z_+$, with the particles denoted as $x_i^{(\ell)}$, where ℓ denotes the "level" and *i* denotes the position of the particle on its level. The system has the interlacing property: $x_{i+1}^{\ell+1} < x_i^{(\ell)} \leq x_i^{(\ell)+1}$ for ℓ odd, and $x_{i+1}^{\ell+1} \leq x_i^{(\ell)} < x_i^{(\ell+1)}$ for ℓ even.

• How does this system evolve?



• How does this system evolve?

Theorem (Borodin-Ferrari 2008)

The projection to each level is still a Markov process

• The movement of the particles on each level can be studied by the representation theory of *sp*_{2n}.

- The movement of the particles on each level can be studied by the representation theory of *sp*_{2n}.
- $U(sp_{2n})$ controls the representation theory of sp_{2n} .

- The movement of the particles on each level can be studied by the representation theory of *sp*_{2n}.
- $U(sp_{2n})$ controls the representation theory of sp_{2n} .

State of X

We define
$$\langle X
angle_t = \sum_\lambda P^{\langle t
angle}(\lambda) rac{{\cal T} r|_{V_\lambda}(x)}{\dim \lambda}$$

- The movement of the particles on each level can be studied by the representation theory of *sp*_{2n}.
- $U(sp_{2n})$ controls the representation theory of sp_{2n} .

State of X

Define
$$\langle X \rangle_t = \sum_{\lambda} P^{\langle t \rangle}(\lambda) \frac{Tr|_{V_{\lambda}}(x)}{\dim \lambda}$$

For $\phi_{2k}^N \in Z(U(sp_{2N}))$

$$< \frac{\Phi_{2k}^N}{2} >_{t/2} = \mathsf{E}(p_{2k}^N)$$
 (1)

•
$$p_{2k}^N = \sum_{i=1}^{r_n} l_i^{2k}$$

• $l_i = \lambda_i - i, \ x_i^N = \lambda_i^N - i + r_n$

Coproduct

The coproduct Δ is a algebra homomorphism $U \rightarrow U \otimes U$ defined on the generators as $\Delta F_{ij} = F_{ij} \otimes 1 + 1 \otimes F_{ij}$

イロト イポト イヨト イヨト

Coproduct

The coproduct Δ is a algebra homomorphism $U(sp_{2n}) \rightarrow U(sp_{2n}) \otimes U(sp_{2n})$ defined on the generators as $\Delta F_{ij} = F_{ij} \otimes 1 + 1 \otimes F_{ij}$

Q_t

Define a non-commutative operator $Q_t: U(sp_{2n}) \to U(sp_{2n})$ as $Q_t = (id \otimes \langle \cdot \rangle_t) \circ \Delta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Coproduct

The coproduct Δ is a algebra homomorphism $U(sp_{2n}) \rightarrow U(sp_{2n}) \otimes U(sp_{2n})$ defined on the generators as $\Delta F_{ij} = F_{ij} \otimes 1 + 1 \otimes F_{ij}$

Q_t

Define a non-commutative operator $Q_t : U(sp_{2n}) \to U(sp_{2n})$ as $Q_t = (id \otimes \langle \cdot \rangle_t) \circ \Delta$

How they work:

We have that $\langle X
angle_{t+\epsilon} = \langle Q_t X
angle_\epsilon$

< □ > < 同 > < 回 > < 回 > < 回 >

Calculating $\langle F_{mm}^2 \rangle_t$:

Ray Shang (Probability and Algebra)

:▶ ◀ 볼 ▶ 볼 ∽ ९. July 26, 2021 20 / 31

Image: Image:

Calculating $\langle F_{mm}^2 \rangle_t$:

• Note that $\langle F^2_{mm}
angle_{t+\epsilon} = \langle Q_t F^2_{mm}
angle_\epsilon$

Calculating
$$\langle F_{mm}^2 \rangle_t$$
:
• Note that $\langle F_{mm}^2 \rangle_{t+\epsilon} = \langle Q_t F_{mm}^2 \rangle_{\epsilon}$
• $Q_t F_{mm}^2 = (id \circ \langle \rangle_t) (\Delta F_{mm}^2)$

メロト メロト メヨト メヨ

Calculating
$$\langle F_{mm}^2 \rangle_t$$
:
• Note that $\langle F_{mm}^2 \rangle_{t+\epsilon} = \langle Q_t F_{mm}^2 \rangle_{\epsilon}$
• $Q_t F_{mm}^2 = (id \circ \langle \rangle_t) (\Delta F_{mm}^2)$
• Then $Q_t F_{mm}^2 = \langle F_{mm}^2 \rangle_t + F_{mm}^2 + 2F_{mm} \langle F_{mm} \rangle_t$

< □ > < 同 > < 回 > < 回 > < 回 >

Calculating
$$\langle F_{mm}^2 \rangle_t$$
:
• Note that $\langle F_{mm}^2 \rangle_{t+\epsilon} = \langle Q_t F_{mm}^2 \rangle_{\epsilon}$
• $Q_t F_{mm}^2 = (id \circ \langle \rangle_t) (\Delta F_{mm}^2)$
• Then $Q_t F_{mm}^2 = \langle F_{mm}^2 \rangle_t + F_{mm}^2 + 2F_{mm} \langle F_{mm} \rangle_t$
• So $\langle F_{mm}^2 \rangle_{t+\epsilon} = \langle Q_t F_{mm}^2 \rangle_{\epsilon} = \langle F_{mm}^2 \rangle_t + \langle F_{mm}^2 \rangle_{\epsilon} + 2 \langle F_{mm} \rangle_{\epsilon} \langle F_{mm} \rangle_t.$

3

メロト メロト メヨトメ

Calculating
$$\langle F_{mm}^2 \rangle_t$$
:
• Note that $\langle F_{mm}^2 \rangle_{t+\epsilon} = \langle Q_t F_{mm}^2 \rangle_{\epsilon}$
• $Q_t F_{mm}^2 = (id \circ \langle \rangle_t) (\Delta F_{mm}^2)$
• Then $Q_t F_{mm}^2 = \langle F_{mm}^2 \rangle_t + F_{mm}^2 + 2F_{mm} \langle F_{mm} \rangle_t$
• So $\langle F_{mm}^2 \rangle_{t+\epsilon} = \langle Q_t F_{mm}^2 \rangle_{\epsilon} = \langle F_{mm}^2 \rangle_t + \langle F_{mm}^2 \rangle_{\epsilon} + 2 \langle F_{mm} \rangle_{\epsilon} \langle F_{mm} \rangle_t$.
• After some more math, you find that
 $\frac{d}{dt} \langle F_{mm}^2 \rangle = Tr(F_{mm}^2) = 2 \implies \langle F_{mm}^2 \rangle_t = 2t$

(

メロト メタト メヨト メヨト

• Calculated $\Phi_4 \in U_{sp_{2n}}$ explicitly

Image: A matrix and A matrix

- Calculated $\Phi_4 \in U_{sp_{2n}}$ explicitly
- $Q_t \Phi_4 = \Phi_4 + (16n+4)t\Phi_2 + (64n^3 + 48n^2 + 8n)t^2 + (\frac{56}{3}n^4 72n^3 \frac{16}{3}n^2 4n)t$

イロト イポト イヨト イヨト 二日

- Calculated $\Phi_4 \in U_{sp_{2n}}$ explicitly
- $Q_t \Phi_4 =$ $\Phi_4 + (16n+4)t\Phi_2 + (64n^3+48n^2+8n)t^2 + (\frac{56}{3}n^4-72n^3-\frac{16}{2}n^2-4n)t$
- $\langle \Phi_4 \rangle_t =$ $(64n^3 + 48n^2 + 8n)t^2 + (40n^4 - 24n^3 + 40n^2 + 4n)t + \frac{n^5 + 15n^4 + 10n^3 - n}{15}$

- 4 間 ト 4 ヨ ト 4 ヨ ト - -

• Calculated $\Phi_4 \in U_{sp_{2n}}$ explicitly

- $Q_t \Phi_4 = \Phi_4 + (16n+4)t\Phi_2 + (64n^3 + 48n^2 + 8n)t^2 + (\frac{56}{3}n^4 72n^3 \frac{16}{3}n^2 4n)t$ • $\langle \Phi_4 \rangle_t = \Phi_4 = \Phi_4 + \Phi$
- $(64n^{3} + 48n^{2} + 8n)t^{2} + (40n^{4} 24n^{3} + 40n^{2} + 4n)t + \frac{n^{5} + 15n^{4} + 10n^{3} n}{15}$
- $Cov(p_2^{N_1}(t_1), p_2^{N_2}(t_2)) =$ $\lim_{L \to \infty} \langle \frac{\Phi_2^{(\eta_1L)} - \langle \Phi_2^{(\eta_1L)} \rangle_{\tau_1L}}{L^2} * \frac{Q_{(\tau_2 - \tau_1)L} \Phi_2^{(\eta_2L)} - \langle Q_{(\tau_2 - \tau_1)L} \Phi_2^{(\eta_2L)} \rangle_{\tau_1L}}{L^2} \rangle_{\tau_1L} =$ $(32\eta_2\eta^2 + 32\eta_1\eta^2 - 32\eta^3)\tau_1 + 64\eta^2\tau_1^2$

Thank you to Professor Kuan and TA Zhengye Zhou for their guidance and helpful discussions, and this program for this amazing opportunity!

Ray Shang (Probability and Algebra)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で