

Algorithmic Algebraic Geometry

Project

Find an efficient algorithm to speed up real root counting for univariate tetranomials with high probability. Approach will be by approximating A-discriminant contours in a new way.

DTU玉

Why do we care about discriminant varieties?

Why do we care about discriminant varieties?

- Root Behavior: the discriminant variety is the set of coefficients that define a polynomial with degenerate roots.

Why do we care about discriminant varieties?

- Root Behavior: the discriminant variety is the set of coefficients that define a polynomial with degenerate roots.
- Degenerate Roots: Degenerate roots help describe transitions in number of real roots and closeness to degeneracy governs hardness of numerical solving.

Why do we care about discriminant varieties?

- Root Behavior: the discriminant variety is the set of coefficients that define a polynomial with degenerate roots.
- Degenerate Roots: Degenerate roots help describe transitions in number of real roots and closeness to degeneracy governs hardness of numerical solving.
- Topological Behavior: More generally, degenerate roots describe transitions in the isotopy type of a (varying) real algebraic surface.

Real polynomial systems occur in applications like...

Real polynomial systems occur in applications like...

- Algebraic Statistics: Where there is an unknown probabilistic model, and you are solving for some hidden probabilities that govern the model. This entails solving polynomial systems for roots in the interval $[0,1]$.

Real polynomial systems occur in applications like...

- Algebraic Statistics: Where there is an unknown probabilistic model, and you are solving for some hidden probabilities that govern the model. This entails solving polynomial systems for roots in the interval $[0,1]$.
- Computational Biochemistry: Where you are trying to predict possible equilibrium concentrations for certain compounds in a complicated chemical reaction. Here, one usually finds sparse polynomial systems in many variables, but of low degree.

Real polynomial systems occur in applications like...

- Algebraic Statistics: Where there is an unknown probabilistic model, and you are solving for some hidden probabilities that govern the model. This entails solving polynomial systems for roots in the interval $[0,1]$.
- Computational Biochemistry: Where you are trying to predict possible equilibrium concentrations for certain compounds in a complicated chemical reaction. Here, one usually finds sparse polynomial systems in many variables, but of low degree.
- Discretizing Partial Differential Equations: In certain physical modelling problems, one is trying to approximate the solutions of a very complicated differential equation. So one then uses a numerical scheme to approximate the solution, and this usually involves expanding into a basis of polynomials. Getting information about the solution a PDE can then be reduced to solving a structured polynomial system, many times, with varying coefficients, over the real numbers.

Easy Example

Using the following tetranomial:

$$
\begin{equation*}
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} \tag{1}
\end{equation*}
$$

Easy Example

Using the following tetranomial:

$$
\begin{equation*}
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3} \tag{1}
\end{equation*}
$$

yields a manageable discriminant:

$$
-27 c_{0}^{2} c_{3}^{2}+18 c_{0} c_{1} c_{2} c_{3}-4 c_{0} c_{2}^{3}-4 c_{1}^{3} c_{3}+c_{1}^{2} c_{2}^{2}
$$

Harder Example

Using a nastier tetranomial:

$$
\begin{equation*}
c_{0}+c_{1} x^{3}+c_{2} x^{5}+c_{3} x^{19} \tag{2}
\end{equation*}
$$

Harder Example

Using a nastier tetranomial:

$$
\begin{equation*}
c_{0}+c_{1} x^{3}+c_{2} x^{5}+c_{3} x^{19} \tag{2}
\end{equation*}
$$

yields a nastier result!:
$1978419655660313589123979 \mathrm{c}_{0}^{16} \mathrm{c}_{3}^{5}+6093825838807983035604992 c_{0}^{12}$ $\mathrm{C}_{1}^{3} c_{2}^{2} C_{3}^{4}-416630859061143640782400 c_{0}^{10} C_{1} C_{2}^{7} c_{3}^{3}+4136784303514917397331968 c_{0}^{8} C_{1}^{6} c_{2}^{4} c_{3}^{3}-$ $168062625401816003641344 c_{0}^{6} c_{1}^{11} c_{2} c_{3}^{3}+546553895696624329228288 c_{0}^{6} c_{1}^{4} c_{2}^{9} c_{3}^{2}+$ $304059692558924048760832 c_{0}^{4} c_{1}^{9} c_{2}^{6} c_{3}^{2}+9103573347707241984000 c_{0}^{4} c_{1}^{2} c_{2}^{14} c_{3}+$ $24410972524327076888576 c_{0}^{2} c_{1}^{14} c_{2}^{3} c_{3}^{2}-1103132840914428362752 c_{0}^{2} c_{1}^{7} c_{2}^{11} c_{3}+$ $34725021329868800000 c_{0}^{2} c_{2}^{19}+498062089990157893632 c_{1}^{19} c_{3}^{2}-$ $48896735641570639872 c_{1}^{12} c_{2}^{8} c_{3}+1200096737160265728 c_{1}^{5} c_{2}^{16}$

Moving Forward...

We need a better way to plot the zero sets of complicated polynomials! We will use the clever Horn-Kapranov Uniformization to reduce the dimension of the parameter space!

Horn-Kapranov Uniformaization

A way to efficiently parameterize discriminant varieties. For $A=\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right]$, let \hat{A} be the 2×4 matrix defined by appending a row of 1s to the top of A and let B in $\mathbb{Z}^{4 \times 2}$ be any matrix whose columns form a basis for the right nullspace of \hat{A}. Then the (logarithmic, reduced) Horn-Kapranov Uniformization for A is the function

$$
\xi_{A}\left(\left[\lambda_{1}: \lambda_{2}\right]\right):=\left(\log \left|\left[\lambda_{1}, \lambda_{2}\right] B^{T}\right|\right) B
$$

which defines a map from $\mathbb{P}_{\mathbb{R}}^{1}$ to \mathbb{R}^{2}.

Horn-Kapranov Uniformization II

For nicer plots, we use: $\left(\lambda_{1}: \lambda_{2}\right)=(\cos \theta, \sin \theta)$ This brings our plots from: $\left[\lambda_{1}: \lambda_{2}\right] \in P_{R}^{1}$ to: $\left(\lambda_{1}: \lambda_{2}\right) \in$ Unit Semi-Circle.

Amoeba

If f is any polynomial in $C\left[x_{1}, \ldots, x_{n}\right]$ then its amoeba is the set

$$
\left\{\left(\log \left|x_{1}\right|, \ldots, \log \left|x_{n}\right|\right) \mid f\left(x_{1}, \ldots, x_{n}\right)=0, x_{i} \in \mathbb{C} \backslash\{0\}\right\}
$$

Amoeba

Figure: This is the Ameoba for $1+x_{1}+x_{2}$.

Image obtained from: https://en.wikipedia.org/wiki/Amoeba(mathematics)

Complexity of Amoeba Membership

Complexity of Amoeba Membership

- Amoebae look cool but are not trivial to draw.

Complexity of Amoeba Membership

- Amoebae look cool but are not trivial to draw.
- Deciding if a rational point (x, y) lies in a 2-dimensional amoeba is already NP-hard!

Plaisted, 1984; Avendano, Kogan, Rojas, Rusek, 2013

Complexity of Amoeba Membership

- Amoebae look cool but are not trivial to draw.
- Deciding if a rational point (x, y) lies in a 2-dimensional amoeba is already NP-hard!

Plaisted, 1984; Avendano, Kogan, Rojas, Rusek, 2013

- The boundary of the last amoeba is defined by the graphs of "simple" transcendental function, e.g., $y=\log \left(1+e^{x}\right)$.

Complexity of Amoeba Membership

- Amoebae look cool but are not trivial to draw.
- Deciding if a rational point (x, y) lies in a 2-dimensional amoeba is already NP-hard!

Plaisted, 1984; Avendano, Kogan, Rojas, Rusek, 2013

- The boundary of the last amoeba is defined by the graphs of "simple" transcendental function, e.g., $y=\log \left(1+e^{x}\right)$.
- Deciding if a rational point lies on or near such a curve gets us into interesting problems involving Diophantine approximation!

DTU き

What to do about Amoeba membership?!

What to do about Amoeba membership?!

- Alternative: Approximate each amoeba boundary curve by a piecewise linear curve.

What to do about Amoeba membership?!

- Alternative: Approximate each amoeba boundary curve by a piecewise linear curve.
- Such curves can be extracted from the Horn-Kapranov Uniformization.

What to do about Amoeba membership?!

- Alternative: Approximate each amoeba boundary curve by a piecewise linear curve.
- Such curves can be extracted from the Horn-Kapranov Uniformization.
- Do they work well with random polynomials/points?

What to do about Amoeba membership?!

- Alternative: Approximate each amoeba boundary curve by a piecewise linear curve.
- Such curves can be extracted from the Horn-Kapranov Uniformization.
- Do they work well with random polynomials/points?
- Experiments show: So-so...

Experimentation!!!

The ultimate goal of our experimentation is to understand how well tropical discriminant chambers approximate true sign chambers.

DTU き

Matlab Code Round 1

Matlab Code Round 1

- Looks at a specific chamber of the amoeba

Matlab Code Round 1

- Looks at a specific chamber of the amoeba
- Uses a tropical approximation of the curve to check which side of the curve (and by proxy, the coefficient space) a point resides in

Matlab Code Round 1

- Looks at a specific chamber of the amoeba
- Uses a tropical approximation of the curve to check which side of the curve (and by proxy, the coefficient space) a point resides in
- Tests a set number of i.i.d. random points to see if they are within that chamber

Matlab Code Round 1

- Looks at a specific chamber of the amoeba
- Uses a tropical approximation of the curve to check which side of the curve (and by proxy, the coefficient space) a point resides in
- Tests a set number of i.i.d. random points to see if they are within that chamber
- Yields an accuracy percentage

Using a Tropical, Linear Approximation:

We use the piecewise function $y=0$ and $y=x$ to approximate the curve of the amoeba.

Figure: $y>=\log \left(1+e^{x}\right)$ and $y>=0$ and $y>=x$

Results are so-so:

Testing 1000 i.i.d. random points:

Trials:	1	2	3	4	5
$\%$:	62%	65%	63%	60%	65%

Testing 10,000 i.i.d. random points:

Trials:	1	2	3	4	5
$\%$:	63%	63%	65%	64%	64%

Testing 100,000 i.i.d. random points:

Trials:	1	2	3	4	5
$\%:$	64%	63%	64%	64%	64%

Complexity Issue for Chamber Membership

- Deciding a polynomial inequality, involving a polynomial of degree d in n variables with coefficients all of absolute value $<=H$, at an input rational point $p=\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$, is a highly non-trivial problem!

Complexity Issue for Chamber Membership

- Deciding a polynomial inequality, involving a polynomial of degree d in n variables with coefficients all of absolute value $<=H$, at an input rational point $p=\left(a_{1} / b_{1}, \ldots, a_{n} / b_{n}\right)$, is a highly non-trivial problem!
- We will use a little trick to get around this! We will change x and y to logarithmic values to yield a more manageable equation to test our inequalities.

DTU Е

Alternative: Simplified Horn-Kapranov

Alternative: Simplified Horn-Kapranov

- The arcs of the discriminant contour are defined by linear combinations of logarithms.

Alternative: Simplified Horn-Kapranov

- The arcs of the discriminant contour are defined by linear combinations of logarithms.
- Approximate each arc by just 2 logarithms: This should also yield easier Diophantine approximation.

DTU $\stackrel{\text { I }}{\ddagger}$

Matlab Code Round 2

Matlab Code Round 2

- Exponent values are plugged in

Matlab Code Round 2

- Exponent values are plugged in
- Code runs through two loops to apply the Horn-Kapranov Uniformization

Matlab Code Round 2

- Exponent values are plugged in
- Code runs through two loops to apply the Horn-Kapranov Uniformization
- The associated amoeba to the polynomial is given along with each quadrant

Example:

We look at a family of polynomials

Canonical slice of $\operatorname{Nabla}_{\mathrm{A}}(\mathrm{R})$, plotted on \log paper, for the family

 $c_{1}+c_{2} x^{7}+c_{3} x^{22}+c_{4} x^{55}$

Figure: This is the Ameoba for $c_{1}+c_{2} x^{7}+c_{3} x^{22}+c_{4} x^{55}$.

Much Closer Approximations (for the most part):

Testing the Coefficient Space

- Setting the coefficients of the polynomial plots a point in the quadrant!

Testing the Coefficient Space

- Setting the coefficients of the polynomial plots a point in the quadrant!
- This shows us where the polynomial lies in coefficient space!

Plotting Polynomials as Points:

More Points:

Obtaining a Real Root Count:

Plugging the previous polynomial examples into Maple will give the real roots.

Results:

$$
f 1:=-1-x^{7}+x^{22}-x^{55}
$$

realroot (fi);

$$
f_{2}:=-2-2 \cdot x^{7}+10 \cdot x^{22}-x^{55} ;
$$

realroot (f2);
$f 3:=-1+x^{7}+x^{22}-x^{55} ;$
realroot(ff);

$$
f 4:=-10+2 x^{7}+10 x^{22}-20 x^{55} ;
$$

realroot(f4)

$$
\begin{gathered}
f 1:=-x^{55}+x^{22}-x^{7}-1 \\
{\left[\left[-\frac{30953}{32768},-\frac{61903}{65536}\right]\right]} \\
f 2:=-x^{55}+10 x^{22}-2 x^{7}-2 \\
\left.\left[\left[-\frac{118191}{131072},-\frac{472761}{524288}\right] \cdot\left[\frac{61}{64}, \frac{977}{1024}\right]\right]\left[\frac{139993}{131072}, \frac{279989}{262144}\right]\right] \\
f 3:=-x^{55}+x^{22}+x^{7}-1 \\
{\left[[-1,-1],\left[\frac{125029}{131072}, \frac{250335}{262144}\right],[1,1]\right]} \\
f 4:=-20 x^{55}+10, x^{22}+2 x^{7}-10 \\
{\left[\left[-\frac{1001}{1024},-\frac{125}{128}\right]\right]}
\end{gathered}
$$

Figure: Using Maple software

Now we can see which region future polynomials lie in which will give us the number of real roots!

Canonical slice of $\operatorname{Nabla}_{A}(R)$, plotted on log paper, for the family

$$
c_{1}+c_{2} x^{7}+c_{3} x^{22}+c_{4} x^{55}
$$

With many thanks...

- Thank you Dr. Rojas for the Matlab code!
- Thank you to Dr. Rojas and TA Joshua Goldstein for the guidance!
- Thank you to the NSF and Texas A \& M for making this research experience possible!

