Reciprocity and the Kernel of Dedekind Sums

Emily Van Bergeyk, Alexis LaBelle Advisor: Dr. Matthew Young

Texas A\&M REU, 2021

July 26, 2021

Overview

- Background
- Dirichlet Characters
- Eisenstein Series
- Dedekind Sums
- $S L_{2} \mathbb{Z}$

Overview

- Background
- Dirichlet Characters
- Eisenstein Series
- Dedekind Sums
- $S L_{2} \mathbb{Z}$
- Reciprocity
- The Fricke Involution
- Reciprocity with Fricke
- The Atkin-Lehner Involutions
- Generalized Reciprocity Formula with Atkin-Lehner
- The effect of the Atkin-Lehner Involutions on Dirichlet Characters

Overview

- Background
- Dirichlet Characters
- Eisenstein Series
- Dedekind Sums
- $S L_{2} \mathbb{Z}$
- Reciprocity
- The Fricke Involution
- Reciprocity with Fricke
- The Atkin-Lehner Involutions
- Generalized Reciprocity Formula with Atkin-Lehner
- The effect of the Atkin-Lehner Involutions on Dirichlet Characters
- Investigating the Kernel
- Reciprocity and the Kernel
- Known Kernel Elements
- General Formula for Kernel Elements from Atkin-Lehner Involutions
- Examples
- Future Study

Background

Dirichlet Characters

Definition

A Dirichlet character modulo q is a function $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ which satisfies the following:

Dirichlet Characters

Definition

A Dirichlet character modulo q is a function $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ which satisfies the following:

- $\chi(n)=\chi(n+q l) \forall n, l \in \mathbb{Z}$.

Dirichlet Characters

Definition

A Dirichlet character modulo q is a function $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ which satisfies the following:

- $\chi(n)=\chi(n+q I) \forall n, I \in \mathbb{Z}$.
- $\chi(m n)=\chi(m) \chi(n) \forall n, m \in \mathbb{Z}$.

Dirichlet Characters

Definition

A Dirichlet character modulo q is a function $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ which satisfies the following:

- $\chi(n)=\chi(n+q I) \forall n, I \in \mathbb{Z}$.
- $\chi(m n)=\chi(m) \chi(n) \forall n, m \in \mathbb{Z}$.
- If $\operatorname{gcd}(n, k)>1$, then $\chi(n)=0$.
- If $\operatorname{gcd}(n, k)=1$, then $\chi(n) \neq 0$.

Dirichlet Characters

Definition

A Dirichlet character modulo q is a function $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ which satisfies the following:

- $\chi(n)=\chi(n+q I) \forall n, I \in \mathbb{Z}$.
- $\chi(m n)=\chi(m) \chi(n) \forall n, m \in \mathbb{Z}$.
- If $\operatorname{gcd}(n, k)>1$,then $\chi(n)=0$.
- If $\operatorname{gcd}(n, k)=1$, then $\chi(n) \neq 0$.
- $\chi(1)=1$.

Dirichlet Characters

Definition

A Dirichlet character modulo q is a function $\chi:(\mathbb{Z} / q \mathbb{Z})^{*} \rightarrow \mathbb{C}^{*}$ which satisfies the following:

- $\chi(n)=\chi(n+q I) \forall n, I \in \mathbb{Z}$.
- $\chi(m n)=\chi(m) \chi(n) \forall n, m \in \mathbb{Z}$.
- If $\operatorname{gcd}(n, k)>1$, then $\chi(n)=0$.
- If $\operatorname{gcd}(n, k)=1$, then $\chi(n) \neq 0$.
- $\chi(1)=1$.

Note that χ is even if $\chi(-1)=1$ and χ is odd if $\chi(-1)=-1$.

Eisenstein Series

Let χ_{1}, χ_{2} be primitive Dirichlet characters with conductors q_{1}, q_{2} respectively. The weight-zero Eisenstein Series of $z \in \mathbb{C}$ associated with Dirichlet characters χ_{1} and χ_{2} is as follows:

Eisenstein Series

$$
E_{\chi_{1}, \chi_{2}}(z, s)=\frac{1}{2} \sum_{(m, n)=1} \frac{\left(q_{2} y\right)^{s} \chi_{1}(m) \chi_{2}(n)}{\left|m q_{2} z+n\right|^{2 s}}, \quad \operatorname{Re}(s)>1
$$

- Through the Dedekind η-function, Eisenstein series give rise to certain Dedekind Sums

Dedekind Sums

The classical Dedekind Sum $S_{\chi_{1}, \chi_{2}}(\gamma)$ is defined as follows:

Dedekind Sum

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=\frac{\tau\left(\overline{\chi_{1}}\right)}{\pi i} \phi_{\chi_{1}, \chi_{2}}(\gamma),
$$

where $\gamma \in \Gamma_{0}\left(q_{1} q_{2}\right)$ and $\phi_{\chi_{1}, \chi_{2}}(\gamma)=f_{\chi_{1}, \chi_{2}}(\gamma z)-\psi(\gamma) f_{\chi_{1}, \chi_{2}}(z)$.
($f_{\chi_{1}, \chi_{2}}(z)$ arises from the Fourier expansion of the completed Eisenstein series)

Dedekind Sums

The classical Dedekind Sum $S_{\chi_{1}, \chi_{2}}(\gamma)$ is defined as follows:

Dedekind Sum

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=\frac{\tau\left(\overline{\chi_{1}}\right)}{\pi i} \phi_{\chi_{1}, \chi_{2}}(\gamma),
$$

where $\gamma \in \Gamma_{0}\left(q_{1} q_{2}\right)$ and $\phi_{\chi_{1}, \chi_{2}}(\gamma)=f_{\chi_{1}, \chi_{2}}(\gamma z)-\psi(\gamma) f_{\chi_{1}, \chi_{2}}(z)$.
($f_{\chi_{1}, x_{2}}(z)$ arises from the Fourier expansion of the completed Eisenstein series)

$$
\begin{gathered}
E_{\chi_{1}, \chi_{2}}(\gamma z)=\psi(\gamma) E_{\chi_{1}, \chi_{2}}(z) \\
\psi(\gamma)=\chi_{1}(d) \overline{\chi_{2}}(d)
\end{gathered}
$$

$S L_{2} \mathbb{Z}$ and Subgroups

$$
S_{\chi_{1}, \chi_{2}}: S L_{2} \mathbb{Z} \rightarrow \mathbb{H}
$$

$$
S L_{2} \mathbb{Z}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z} ; a d-b c=1\right\} .
$$

- $\Gamma_{0}(q)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2} \mathbb{Z} \right\rvert\, c \equiv 0(\bmod q)\right\}$.
- $\Gamma_{1}(q)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2} \mathbb{Z} \right\rvert\, a \equiv d \equiv 1(\bmod q) ; c \equiv 0(\bmod q)\right\}$.
- $\Gamma(q)=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2} \mathbb{Z} \right\rvert\, a \equiv d \equiv 1(\bmod q) ; b \equiv c \equiv 0(\bmod q)\right\}$.

Reciprocity

The Fricke Involution

$$
\omega=\omega_{q_{1} q_{2}}=\left(\begin{array}{cc}
0 & -1 \\
q_{1} q_{2} & 0
\end{array}\right)
$$

- The Eisenstein series is a pseudo-eigenfunction of the Fricke involution:

$$
\text { - } E_{\chi_{1}, \chi_{2}}(\omega z, s)=\chi_{2}(-1) E_{\chi_{1}, \chi_{2}}(z, s)
$$

- The Fricke involution swaps the characters associated to the Dedekind sum; χ_{1} becomes χ_{2} and vice versa

Theorem (SVY)

For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}\left(q_{1} q_{2}\right)$, let $\gamma^{\prime}=\left(\begin{array}{cc}d & -c \\ -b q_{1} q_{2} & a\end{array}\right) \in \Gamma_{0}\left(q_{1} q_{2}\right)$. If
χ_{1} and χ_{2} are even, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)
$$

If χ_{1} and χ_{2} are odd, then

$$
S_{\chi_{1}, \chi_{2}}(\gamma)=-S_{\chi_{2}, \chi_{1}}\left(\gamma^{\prime}\right)
$$

The Atkin-Lehner Involutions

The Fricke Involution

$$
\omega=\omega_{q_{1} q_{2}}=\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)
$$

The Fricke involution is associated to some N . Let $N=p_{1}^{q_{1}}{ }^{*}$. . .* $p_{r} q$ be the prime factorization of N. There is an Atkin-Lehner involution $\omega_{p_{r}}$ associated to each prime factor p_{r} of N .

Definition

Suppose that $Q R=N$ and $(Q, R)=1$. We define an Atkin-Lehner operator by

$$
W_{Q}=\left(\begin{array}{cc}
Q r & t \\
N u & Q v
\end{array}\right)
$$

where $r, t, u, v \in \mathbb{Z}, r \equiv r_{0}(\bmod R)$ and $t \equiv t_{0}(\bmod Q)$ such that Qrv-Rut $=1$.

Research Proposal

As the Atkin-Lehner involutions form a family of operators closely connected to the Fricke involution, we found that the reciprocity formulas of these Dedekind sums form a family of formulas, one for each Atkin-Lehner involution,

Generalized Reciprocity Formula with Atkin-Lehner

Let χ_{1}, χ_{2} be primitive Dirichlet characters with moduli q_{1}, q_{2}, respectively. The following theorem holds for any Atkin-Lehner involution W_{Q} and W_{Q}^{\prime} such that $W_{Q} \gamma=\gamma^{\prime} W_{Q}^{\prime}$, and $\gamma, \gamma^{\prime} \in \Gamma_{0}(q)$.

Theorem

$$
S_{\chi_{1}, \chi_{2}}\left(W_{Q}\right)+\xi S_{\chi_{1}^{\prime} \chi_{2}^{\prime}}(\gamma)=\bar{\psi}(\gamma) S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(W_{Q}^{\prime}\right)+S_{\chi_{1}, \chi_{2}}\left(\gamma^{\prime}\right)
$$

where $\left.\left.\xi=\frac{q_{2} \tau\left(\chi_{2}^{\prime}\right)}{q_{2}^{\prime} \tau\left(\chi_{2}\right)} \chi_{2}^{(Q)}(-1) \bar{\psi}^{(Q)}\left(q_{2}^{(R)} t_{0}\right)\right) \bar{\psi}^{(R)}\left(q_{2}^{(Q)} r_{0}\right)\right)$ and $\bar{\psi}(\gamma)=\chi_{1}^{\prime} \overline{\chi_{2}^{\prime}}$

Generalized Reciprocity Formula with Atkin-Lehner

Let χ_{1}, χ_{2} be primitive Dirichlet characters with moduli q_{1}, q_{2}, respectively. The following theorem holds for any Atkin-Lehner involution W_{Q} and W_{Q}^{\prime} such that $W_{Q} \gamma=\gamma^{\prime} W_{Q}^{\prime}$, and $\gamma, \gamma^{\prime} \in \Gamma_{0}(q)$.

Theorem

$$
S_{\chi_{1}, \chi_{2}}\left(W_{Q}\right)+\xi S_{\chi_{1}^{\prime} \chi_{2}^{\prime}}(\gamma)=\bar{\psi}(\gamma) S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(W_{Q}^{\prime}\right)+S_{\chi_{1}, \chi_{2}}\left(\gamma^{\prime}\right)
$$

where $\left.\left.\xi=\frac{q_{2} \tau\left(\chi_{2}^{\prime}\right)}{q_{2}^{\prime} \tau\left(\chi_{2}\right)} \chi_{2}^{(Q)}(-1) \bar{\psi}^{(Q)}\left(q_{2}^{(R)} t_{0}\right)\right) \bar{\psi}^{(R)}\left(q_{2}^{(Q)} r_{0}\right)\right)$ and $\bar{\psi}(\gamma)=\chi_{1}^{\prime} \overline{\chi_{2}^{\prime}}$

If $W_{Q}=\left(W_{Q}\right)^{\prime}$, the formula simplifies as

$$
S_{\chi_{1}, \chi_{2}}\left(\gamma^{\prime}\right)=(1-\bar{\psi}(\gamma)) S_{\chi_{1}, \chi_{2}}\left(W_{Q}\right)+\xi S_{\chi_{1}^{\prime} \chi_{2}^{\prime}}(\gamma)
$$

Atkin-Lehner Involutions and Dirichlet Characters

Fricke Involution ω :

- $\chi_{1} \rightarrow \chi_{2}$
- $\chi_{2} \rightarrow \chi_{1}$

Atkin-Lehner Involution W_{Q} associated to prime factor \mathbf{Q} :
*Recall $q_{1} q_{2}=N=Q R$

- $\chi_{1}=\chi_{1}^{(Q)} \chi_{1}^{(R)} \rightarrow \chi_{2}^{(Q)} \chi_{1}^{(R)}$
- $\chi_{2}=\chi_{2}^{(Q)} \chi_{2}^{(R)} \rightarrow \chi_{1}^{(Q)} \chi_{2}^{(R)}$

The effect of Atkin-Lehner on Dirichlet Characters

$\chi_{1}^{\prime}=\chi_{2}^{(Q)} \chi_{1}^{(R)}$ and $\chi_{2}^{\prime}=\chi_{1}^{(Q)} \chi_{2}^{(R)}$

Investigating the Kernel

The Kernel of Newform Dedekind Sums

Let χ_{1}, χ_{2} be primitive Dirichlet characters with conductors q_{1}, q_{2} respectively, with $q_{1}, q_{2}>1$. Then the kernel of the Dedekind sum $S(h, k)$ associated to χ_{1}, χ_{2} is defined by:

Kernel associated to χ_{1}, χ_{2}

$$
K_{\chi_{1}, \chi_{2}}=\operatorname{ker}\left(S_{\chi_{1}, \chi_{2}}\right)=\left\{\gamma \in \Gamma_{0}\left(q_{1} q_{2}\right) \mid S_{\chi_{1}, \chi_{2}}(\gamma)=0\right\}
$$

If $\bar{\psi}(\gamma)=1$, the reciprocity formula simplifies to:

$$
S_{\chi_{1}, \chi_{2}}\left(\gamma^{\prime}\right)=\xi S_{\chi_{1}^{\prime} x_{2}^{\prime}}^{\prime}(\gamma)
$$

So, $\gamma^{\prime} \in K_{\chi_{1}, \chi_{2}} \Longleftrightarrow \gamma \in K_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}$.
Recall $W_{Q} \gamma=\gamma^{\prime} W_{Q}$. So $\gamma=W_{Q}^{-1} \gamma^{\prime} W_{Q}$.

$$
\gamma^{\prime} \in K_{\chi_{1}, \chi_{2}} \Longleftrightarrow W_{Q}^{-1} \gamma^{\prime} W_{Q} \in K_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}
$$

Dedekind Sums and Elements of $K_{\chi_{1}, \chi_{2}}$

Definition

$$
\begin{aligned}
& S_{\chi_{1}, \chi_{2}}(\gamma)=\sum_{j \bmod c} \sum_{n \bmod q_{1}} \overline{\chi_{2}}(j) \overline{\chi_{1}}(n) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right) \text { where } \\
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}\left(q_{1} q_{2}\right) \text { with } c \geq 1 \text { and } \chi_{1} \chi_{2}(-1)=1 .
\end{aligned}
$$

B_{1} is the first Bernoulli function defined by

$$
B_{1}(x)= \begin{cases}x-\lfloor x\rfloor-\frac{1}{2} & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}
$$

Definition

$$
\begin{aligned}
& S_{\chi_{1}, \chi_{2}}(\gamma)=\sum_{j \bmod } \sum_{c n \bmod q_{1}} \overline{\chi_{2}}(j) \overline{\chi_{1}}(n) B_{1}\left(\frac{j}{c}\right) B_{1}\left(\frac{n}{q_{1}}+\frac{a j}{c}\right) \text { where } \\
& \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}\left(q_{1} q_{2}\right) \text { with } c \geq 1 \text { and } \chi_{1} \chi_{2}(-1)=1 .
\end{aligned}
$$

B_{1} is the first Bernoulli function defined by

$$
B_{1}(x)= \begin{cases}x-\lfloor x\rfloor-\frac{1}{2} & \text { if } x \in \mathbb{R} \backslash \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}
$$

The value of $S_{\chi_{1}, \chi_{2}}(\gamma)$ solely depends on the first column of γ, so we are allowed to use the equivalent notation $S_{\chi_{1}, \chi_{2}}(a, c)$.

Known Kernel Elements

Proposition (Nguyen, Ramirez, Young)
 $S_{\chi_{1}, \chi_{2}}\left(1, c^{\prime} q_{1} q_{2}\right)=0$ for all $c^{\prime} \in \mathbb{Z}$

Figure: $K_{3,5}$ for $1 \leq c \leq 10 q_{1} q_{2}$

Known Kernel Elements

Proposition (Nguyen, Ramirez, Young)

For every (a, c) in the kernel, $(c-a, c)$ is also in the kernel.

Figure: $K_{3,5}$ for $1 \leq c \leq 10 q_{1} q_{2}$

General Formula for Kernel Elements from Atkin-Lehner Involutions

Theorem

Let χ_{1} and χ_{2} be nontrivial primitive Dirichlet characters modulo q_{1}, q_{2}, respectively. Let $W_{Q}=\left(\begin{array}{cc}Q r & t \\ N u & Q v\end{array}\right)$ be an Atkin-Lehner operator. Then $S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(1-N t k r, Q N k r^{2}\right)=0$ for all $k \in \mathbb{Z}$.

General Formula for Kernel Elements from Atkin-Lehner Involutions

Theorem

Let χ_{1} and χ_{2} be nontrivial primitive Dirichlet characters modulo q_{1}, q_{2}, respectively. Let $W_{Q}=\left(\begin{array}{cc}Q r & t \\ N u & Q v\end{array}\right)$ be an Atkin-Lehner operator. Then $S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(1-N t k r, Q N k r^{2}\right)=0$ for all $k \in \mathbb{Z}$.
Overview of Proof. We take $\gamma^{\prime}=\left(\begin{array}{cc}1 & 0 \\ k q_{1} q_{2} & 1\end{array}\right)$. Rearranging the relationship $W_{Q} \gamma=\gamma^{\prime} W_{Q}$ from our reciprocity formula gives

$$
\gamma=\left(W_{Q}\right)^{-1} \gamma^{\prime} W_{Q}=\left(\begin{array}{cc}
1-N t k r & N t k r \\
Q N k r^{2} & 1+N t k r
\end{array}\right) .
$$

We see that since $\gamma^{\prime} \in K_{\chi_{1}, \chi_{2}}, \gamma \in K_{\chi_{1}^{\prime}, x_{2}^{\prime}}$. Thus, for all $k \in \mathbb{Z}$, $S_{x_{1}^{\prime}, x_{2}^{\prime}}\left(1-N t k r, Q N k r^{2}\right)=0$, as desired.

General Formula for Kernel Elements from Atkin-Lehner Involutions

Proposition

Let χ_{1} and χ_{2} be nontrivial primitive Dirichlet characters modulo q_{1}, q_{2}, respectively. Let $W_{Q}=\left(\begin{array}{cc}Q r & t \\ N u & Q v\end{array}\right)$ be an Atkin-Lehner operator. Then $S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(-1-N t k r, Q N k r^{2}\right)=0$ for all $k \in \mathbb{Z}$.

General Formula for Kernel Elements from Atkin-Lehner Involutions

Proposition

Let χ_{1} and χ_{2} be nontrivial primitive Dirichlet characters modulo q_{1}, q_{2}, respectively. Let $W_{Q}=\left(\begin{array}{cc}Q r & t \\ N u & Q v\end{array}\right)$ be an Atkin-Lehner operator. Then $S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(-1-N t k r, Q N k r^{2}\right)=0$ for all $k \in \mathbb{Z}$.

Note. An easy modification of the proof of our last theorem using $\gamma^{\prime}=\left(\begin{array}{cc}-1 & 0 \\ k q_{1} q_{2} & -1\end{array}\right)$ completes the proof.

Elements of the Kernel

Corollary

The kernel includes all pairs of elements $(\pm 1+N k, Q N k)$ and $(\pm 1+(Q-1) N k, Q N k)$

Overview of Proof. Let the Atkin-Lehner operator W_{Q} be such that $r=1, t=1$. Then by the previous theorem,

$$
S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}\left(1-N t k r, Q N k r^{2}\right)=S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}(1-N k, Q N k)=0 .
$$

Using properties from SVY, it follows that

$$
S_{\chi_{1}^{\prime}, x_{2}^{\prime}}(1+(Q-1) N k, Q N k)=0 \text { and } S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}(-1+N k, Q N k)=0
$$

Similarly, by the analogous proposition, $S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}(-1-N k, Q N k)=0$.
Then, using properties from SVY, it follows that

$$
S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}(-1+(Q-1) N k, Q N k)=0 \text { and } S_{\chi_{1}^{\prime}, \chi_{2}^{\prime}}(1+N k, Q N k)=0
$$

Altogether, these symmetries explain the pairs of kernel elements $(\pm 1+N k, Q N k)$ and $(\pm 1+(Q-1) N k, Q N k)$.

Example $K_{3,5} . \quad N=15, Q=3, R=5$

Our Atkin-Lehner matrix $W_{3}=\left(\begin{array}{cc}3 & 1 \\ 15 & 6\end{array}\right)$. We calculate

$$
\left(W_{3}\right)^{-1} \gamma^{\prime} W_{3}
$$

with $k=1$ and

$$
\gamma^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
k q_{1} q_{2} & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
15 & 1
\end{array}\right)
$$

We obtain the product

$$
\left(\begin{array}{cc}
-14 & -5 \\
45 & 16
\end{array}\right)
$$

Example $K_{3,5} . \quad N=15, Q=3, R=5$

Our product was $\left(\begin{array}{cc}-14 & -5 \\ 45 & 16\end{array}\right)$.

- $(a, c)=(-14,45)$
- Looking a $(\bmod c)$, we obtain $(31,45)$
- $(c-a, c)=(14,45)$,
- By our proposition, we obtain $(16,45)$ and $(29,45)$

Example: $(\pm 1+t N, Q N)$

$$
(\pm 1+t N, Q N)
$$

Figure: $K_{7,11}$ for $1 \leq c \leq 10 q_{1} q_{2}$

Example: $\left(\pm 1+t k N, t^{2} k N\right)$

$$
\left(\pm 1+t k N, t^{2} k N\right)
$$

Figure: $K_{3,5}$ for $1 \leq c \leq 10 q_{1} q_{2}$

Figure: $K_{3,13}$ for $1 \leq c \leq 10 q_{1} q_{2}$

Figure: $K_{7,3}$ for $1 \leq c \leq 10 q_{1} q_{2}$

Figure: $K_{3,13}$ for $1 \leq c \leq 10 q_{1} q_{2}$

Acknowledgements

We sincerely thank Dr. Matthew Young for his immense support, guidance, and encouragement throughout the project, as well as the TA, Agniva Dasgupta, for his support. We could not have gotten anywhere without them. We especially thank Evuilynn Nguyen and Juan J. Ramirez for the creation of the graphs seen throughout. And finally, thank you to the Department of Mathematics at Texas A\&M and the NSF (DMS-1757872) for supporting the REU.
(1) T. Apostol.Modular Functions and Dirichlet Series in Number Theory., volume 41 ofGraduate Texts inMathematics. Springer-Verlag, New York, 2nd edition, 1990.
(2) A. O. L. Atkin and Wen Ch'ing Winnie Li. Twists of newforms and pseudo-eigenvalues ofW-operators.Invent. Math., 48(3):221-243, 1978.
(3) Travis Dillon and Stephanie Gaston. An average of generalized dedekind sums. Journal of Number Theory,212:323-338, Jul 2020.
(4) Evuilynn Nguyen, Juan J. Ramirez, and Matthew P. Young. The kernel of newform dedekind sums, 2020.
(5) Tristie Stucker, Amy Vennos, and Matthew P. Young. Dedekind sums arising from newform eisensteinseries, 2019.
(6) The Sage Developers.SageMath, the Sage Mathematics Software System (Version 9.0), 2021.https://www.sagemath.org.
(7) James Weisinger.Some Results On Classical Eisenstein Series And Modular Forms over Function Fields. ProQuest LLC, Ann Arbor, MI, 1977. Thesis (Ph.D.)-Harvard University.
(8) Matthew P. Young. Explicit calculations with eisenstein series. Journal of Number Theory, 199:1-48, Jun2019

