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Abstract. We may solve sparse univariate tetranomials for their
real positive roots using the discriminant variety, in time indepen-
dent of the degree of the input polynomial. This useful technique
is hampered by issues with determining sidedness, so we use in-
stead approximations of the discriminant variety. We explore and
implement improvements upon a piecewise linear approximation
in order to develop an algorithm that outputs the number of real,
positive zeroes of the inputted, arbitrary degree, polynomial.

1. introduction

Working with sparse polynomials and using their discriminant vari-
eties offers us the possibility of solving over the field of real numbers
very quickly, independent of degree. This approach encourages us to
consider polynomials as described in the following definition:

Definition 1. We call

f =
n+k∑
i=1

cix
ai

an n-variate n+ k-nomial, with f ∈ C[x1...xn] and ci ̸= 0.The set A =
{a1....an+k} ⊂ Zn is the support of the polynomial.

To understand the zero sets of these polynomials, we use the theory
of A-discriminant varieties.

Definition 2. Given an n-variate n + k-nomial, with support A, the
A-discriminant variety is the closure of ∇A = (c1,...,cn+k) ∈ (C∗)n+k,
where f = c1x

a1 ...cn+kx
an+k has a degenerate root.

We call roots with multiplicity > 1 degenerate roots. The struc-
ture of the A discrinimant variety relates directly to the zero sets of
the polynomials with the given support A, since degeneracy exists at
points of change in zero set isotopy. When the codimension of ∇A = 1,
the discriminant variety is the zero locus of irreducible polynomial, but
this polynomial gets very complicated when the degree increases. Since
we want to work independent of degree, we cannot use this discriminant
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polynomial to gain information about the zeroes of input polynomials.
So, we turn to a alternate method, Horn-Kapranov Uniformization,
which neatly parameterizes the A-discriminant variety. We begin with
our polynomial f , and derive a system of equations by setting both f
and xf ′ equal to zero, thereby identifying points of degeneracy. From
this system, we derive a matrix Â.
For example, with f = c0 + c1x

a1 + c2x
a2 , we get

[
1 1 1
0 a1 a2

] c0
c1x

a1

c2x
a2

 =

[
0
0

]
; Â =

[
1 1 1
0 a1 a2

]
We then define another matrix B, whose columns form a basis of the
right nullspace of Â.

Theorem 1. The image of ΨA,B([λ]) = log|λBT |B, with [λ] ∈ Pk−2
R ,

is a slice of log|∇A|.
Using this parameterization, with k = 3, we can visualize the dis-

criminant variety in two dimensions and use its many properties. How-
ever, although HKU describes the discriminant variety more efficiently,
it is not optimized for our goal of determining the chamber of the dis-
criminant variety a given point in coefficient space is in. So, we turn to
approximations: previous REU work developed both linear piece-wise
and tropical amoeba approximations. Our work involves implement-
ing the tropical amoeba approximation in such a way that allows for
quickly determining sidedness of the given curve.

2. Techniques and Results

We seek an explicit description of the parametrically expressed trop-
ical amoeba approximation, in green below.

We are looking at the amoebae of a family of trinomials of the form
x+ y + 1 = 0.

Definition 3. The Amoeba of a polynomial is the coordinate-wise
log|•| of its zero set.
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From this equation, we derive the curve y = log(1− e−x), and apply
a simple change of variables which corresponds to rotation:[

sin(m) cos(m)
cos(n) −sin(n)

] [
x
y

]
Our technique for finding the proper m and n is as follows. In each
orthant, we have two ’rays’ corresponding to rows of the B matrix. The
points plotted in the orthant may be, for example, the image of the in-
terval (tan−1(−B3,2/B3,1), tan

−1(−B2,2/B2,1)) under the mapping ψA,B

from the previous page. When the vectors defined by these appropriate
rows of the B matrix are not in quadrants I and IV or II and III, we
simply define

m = π − tan−1(min) (1)

n = m+ π/2− |(tan−1(min)− tan−1(max)| (2)

where min is the minimum of −Ba,2/Ba,1,−Bb,2/Bb,1, and max, respec-
tively, is the maximum, with a and b being the two rows of B related
to the specific orthant in which we are approximating.

In the other case, where the vectors defined by the specified rows of
the B matrix are in quadrants I and IV, or in II and III, we simply
swap m and n in the above definitions. Lastly, when the angle formed
by the rays, i.e. the angle facing outward in the plot of the discriminant
variety shown below, is under 180◦, we rotate by π. This produces the
approximation shown below in magenta.
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This approximation, of course, only suits those orthants without a
cusp, a critical point in the map described by Horn Kapranov Uni-
formization. In these orthants, we need a different approximation.

Within 1 unit of the cusp, we turn to another family of curves: those
defined by y3 = x2. The rotation we apply in this orthant depends
only on one ray, rather than two as described on the previous page:
the ray bisecting those in the orthant, defined by their sum. Then, we
adjust the angle formed by the cusp through a constant a defined by
a quadratic equation with input being the angle formed by the rays.
Finally, the curve is bent to one side based on the distance between the
point at which the rays, if extended, would intersect, and the bisecting
ray mentioned above. This approximation produces curves such as the
one below:
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The magenta curve is used when the inputted point is outside the circle,
and the red curve, given by the process detailed on the previous page,
is used when inside.

Now, we have approximated the discriminant variety in every orthant
in which it has points. What remains is to simply solve the system of
equations given by derivatives of ψA,B from page 2 to solve for the
cusp. The program takes in a point in coefficient space, maps to the
slice of logspace we are looking at, and evaluates the expression giving
the approximation in the given orthant to determine sidedness. For ex-
ample, an input of

[
−0.05 0.8 −3 3

]
produces the following output:

.
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