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Project Goal Introduction

We want to approximate the discriminant contour of a tetranomial, given its
support, in order to determine the number of real zeroes, given its coefficients.

...but what does that mean? Let’s start with some definitions!
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Project Background

We are working with univariate tetranomials. We care more about the number of
variables and terms than about degree.

Definition
We call

f =
n+k∑
i=1

cix
ai

an n-variate n+ k-nomial, with f ∈ C[x1...xn] and ci ̸= 0.The set A =
{a1....an+k} ⊂ Z is the support of the polynomial.

We will use something called the discriminant to understand the positive zero set
of our polynomials...
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Project Background continued

Definition
Given an n-variate n+ k-nomial, with support A, the A-discriminant variety is the
closure of ∇A = (c1,...,cn+k) ∈ (C∗)n+k, where f = c1x

a1 ...cn+kx
an+k has a

degenerate root.

We call roots with multiplicity > 1 degenerate roots.

1 Discriminant polynomial

2 Issues with computing

3 Efficient solution?
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Project Background continued

We parameterize the discriminant variety using the Horn-Kapranov
Uniformization:

1 Support matrix A

2 Form matrix B from basis of right nullspace

Theorem

The image of ΨA,B([λ]) = log|λBT |B, with [λ] ∈ Pk−2
C , is a slice of log|∇A|

Example: A =
[
0 1 2 3

]
, B =


1 2
−2 −3
1 0
0 1


The parameterization we get is (log|λ1 + 3λ2| − 2log|2λ1 + 3λ2| +
log|λ1|, 2log|λ1 + 2λ2| − 3log|2λ1 + 3λ2|+ log|λ2|)...
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Project Background continued

...that parameterization is what produced the plot from the first slide!

1 Mapping from coefficient space to logspace

2 Hardt’s Triviality Theorem consequence: chambers

3 Signed orthants

4 Viro’s method to compute number of real, positive zeroes

5 Approximations of the reduced A-discriminant variety
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Project Goal

So, let’s go back to the beginning now: we want to approximate the discriminant
variety of a tetranomial, given its support, in order to determine the number of
real zeroes, given its coefficients.

First, we need to understand some properties of the reduced A-discriminant; let’s

go back to the earlier example, with A =
[
0 1 2 3

]
, B =


1 2
−2 −3
1 0
0 1

. Each
of the rows in the B matrix corresponds to a pole.
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Implementing Our New Approximation

So, given what we know about the reduced A-discriminant variety, we implement
the following approximation

1 For orthants without a cusp (more on this later!), we use the contour of the
amoebae of a family of simple trinomials: x+ y − 1 = 0

Definition

The Amoeba of a polynomial is the coordinate-wise log|•| of its zero set.

2 From this, we get the curve defined by y = log(1− ex)

3 Now, we apply rotations given by the rays in each orthant...
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Implementing Our New Approximation

After we have applied the proper rotations given by the rays, we compute the
constant determining the sharpness of the curve from the angle formed by the rays.

In most orthants, this curve matches nearly perfectly with the one parameterized
by HKU...but what about cusps?

Chlachidze Texas A&M University 9 / 13



Implementing Our New Approximation

After we have applied the proper rotations given by the rays, we compute the
constant determining the sharpness of the curve from the angle formed by the rays.

In most orthants, this curve matches nearly perfectly with the one parameterized
by HKU...but what about cusps?

Chlachidze Texas A&M University 9 / 13



Implementing Our New Approximation

We call critical points of the map given by HKU cusps.

Within 1 unit of the cusp, our approximation is no good!

So, we use it only when the inputted point is outside of the circle shown above.
When inside, we use another familiar curve, of the form y3 = x2

Once again, we apply rotation and sharpen the curve according to the rays and
the angle they form. The shape is not always symmetrical, so a little trick is
needed there.

Chlachidze Texas A&M University 10 / 13



Implementing Our New Approximation

We call critical points of the map given by HKU cusps.

Within 1 unit of the cusp, our approximation is no good!

So, we use it only when the inputted point is outside of the circle shown above.
When inside, we use another familiar curve, of the form y3 = x2

Once again, we apply rotation and sharpen the curve according to the rays and
the angle they form. The shape is not always symmetrical, so a little trick is
needed there.

Chlachidze Texas A&M University 10 / 13



Implementing Our New Approximation

We call critical points of the map given by HKU cusps.

Within 1 unit of the cusp, our approximation is no good!

So, we use it only when the inputted point is outside of the circle shown above.
When inside, we use another familiar curve, of the form y3 = x2

Once again, we apply rotation and sharpen the curve according to the rays and
the angle they form. The shape is not always symmetrical, so a little trick is
needed there.

Chlachidze Texas A&M University 10 / 13



Implementing Our New Approximation

To solve for the cusp, we solve a simple system of equations given by the partial
derivatives of the map given by HKU.

So, in each orthant we have approximated the reduced discriminant variety. Now,
determining sidedness is simple:

1 Take log|•| of input point in 4D coefficient space

2 Multiply by B matrix

3 Identify proper orthant

4 Evaluate expression approximating curve in that orthant

5 Number of zeroes is given by Viro diagram
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Implementing Our New Approximation

Example: input point [-0.05, 0.8, -3, 3], produces output 3 real, positive roots
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