Discriminant Varieties of Arbitrary Degree Univariate Tetranomials

Ellen Chlachidze

Mathematics REU student, Texas A\&M University, College Station, TX

July 18th, 2022

Project Goal Introduction

We want to approximate the discriminant contour of a tetranomial, given its support, in order to determine the number of real zeroes, given its coefficients.

Project Goal Introduction

We want to approximate the discriminant contour of a tetranomial, given its support, in order to determine the number of real zeroes, given its coefficients.

Project Goal Introduction

We want to approximate the discriminant contour of a tetranomial, given its support, in order to determine the number of real zeroes, given its coefficients.

...but what does that mean? Let's start with some definitions!

Project Background

We are working with univariate tetranomials. We care more about the number of variables and terms than about degree.

Project Background

We are working with univariate tetranomials. We care more about the number of variables and terms than about degree.

Definition

We call

$$
f=\sum_{i=1}^{n+k} c_{i} x^{a_{i}}
$$

an n-variate $n+k$-nomial, with $\mathrm{f} \in \mathbb{C}\left[\mathrm{x}_{1} \ldots x_{n}\right]$ and $c_{i} \neq 0$. The set $\mathrm{A}=$ $\left\{a_{1} \ldots a_{n+k}\right\} \subset \mathbb{Z}$ is the support of the polynomial.

Project Background

We are working with univariate tetranomials. We care more about the number of variables and terms than about degree.

Definition

We call

$$
f=\sum_{i=1}^{n+k} c_{i} x^{a_{i}}
$$

an n-variate $n+k$-nomial, with $\mathrm{f} \in \mathbb{C}\left[\mathrm{x}_{1} \ldots x_{n}\right]$ and $c_{i} \neq 0$. The set $\mathrm{A}=$ $\left\{a_{1} \ldots a_{n+k}\right\} \subset \mathbb{Z}$ is the support of the polynomial.

We will use something called the discriminant to understand the positive zero set of our polynomials...

Project Background continued

Definition

Given an n-variate $n+k$-nomial, with support A, the A-discriminant variety is the closure of $\nabla_{A}=\left(c_{1}, \ldots, c_{n+k}\right) \in\left(\mathbb{C}^{*}\right)^{n+k}$, where $f=c_{1} x^{a_{1}} \ldots c_{n+k} x^{a_{n+k}}$ has a degenerate root.

Project Background continued

Definition

Given an n-variate $n+k$-nomial, with support A, the A-discriminant variety is the closure of $\nabla_{A}=\left(c_{1}, \ldots, c_{n+k}\right) \in\left(\mathbb{C}^{*}\right)^{n+k}$, where $f=c_{1} x^{a_{1}} \ldots c_{n+k} x^{a_{n+k}}$ has a degenerate root.

We call roots with multiplicity >1 degenerate roots

Project Background continued

Definition

Given an n-variate $n+k$-nomial, with support A, the A-discriminant variety is the closure of $\nabla_{A}=\left(c_{1}, \ldots, c_{n+k}\right) \in\left(\mathbb{C}^{*}\right)^{n+k}$, where $f=c_{1} x^{a_{1}} \ldots c_{n+k} x^{a_{n+k}}$ has a degenerate root.

We call roots with multiplicity >1 degenerate roots.
(1) Discriminant polynomial
(2) Issues with computing
(3) Efficient solution?

Project Background continued

We parameterize the discriminant variety using the Horn-Kapranov Uniformization:
(1) Support matrix A
(2) Form matrix B from basis of right nullspace

Theorem

The image of $\Psi_{A, B}([\lambda])=\log \left|\lambda B^{T}\right| B$, with $[\lambda] \in \mathbb{P}_{\mathbb{C}}^{k-2}$, is a slice of $\log \left|\nabla_{A}\right|$

Project Background continued

We parameterize the discriminant variety using the Horn-Kapranov Uniformization:
(1) Support matrix A
(2) Form matrix B from basis of right nullspace

Theorem

The image of $\Psi_{A, B}([\lambda])=\log \left|\lambda B^{T}\right| B$, with $[\lambda] \in \mathbb{P}_{\mathbb{C}}^{k-2}$, is a slice of $\log \left|\nabla_{A}\right|$
Example: $A=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -2 & -3 \\ 1 & 0 \\ 0 & 1\end{array}\right]$
The parameterization we get is $\left(\log \left|\lambda_{1}+3 \lambda_{2}\right|-2 \log \left|2 \lambda_{1}+3 \lambda_{2}\right|+\right.$ $\left.\log \left|\lambda_{1}\right|, 2 \log \left|\lambda_{1}+2 \lambda_{2}\right|-3 \log \left|2 \lambda_{1}+3 \lambda_{2}\right|+\log \left|\lambda_{2}\right|\right) \ldots$

Project Background continued

...that parameterization is what produced the plot from the first slide!

Project Background continued

...that parameterization is what produced the plot from the first slide!

(1) Mapping from coefficient space to logspace

Project Background continued

...that parameterization is what produced the plot from the first slide!

(1) Mapping from coefficient space to logspace
(2) Hardt's Triviality Theorem consequence: chambers

Project Background continued

...that parameterization is what produced the plot from the first slide!

(1) Mapping from coefficient space to logspace
(2) Hardt's Triviality Theorem consequence: chambers
(8) Signed orthants

Project Background continued

...that parameterization is what produced the plot from the first slide!

(1) Mapping from coefficient space to logspace
(2) Hardt's Triviality Theorem consequence: chambers
(3) Signed orthants
(4) Viro's method to compute number of real, positive zeroes

Project Background continued

...that parameterization is what produced the plot from the first slide!

(1) Mapping from coefficient space to logspace
(2) Hardt's Triviality Theorem consequence: chambers
(3) Signed orthants
(4) Viro's method to compute number of real, positive zeroes
(5) Approximations of the reduced A-discriminant variety

Project Goal

So, let's go back to the beginning now: we want to approximate the discriminant variety of a tetranomial, given its support, in order to determine the number of real zeroes, given its coefficients.

Project Goal

So, let's go back to the beginning now: we want to approximate the discriminant variety of a tetranomial, given its support, in order to determine the number of real zeroes, given its coefficients.
First, we need to understand some properties of the reduced A-discriminant; let's go back to the earlier example, with $A=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -2 & -3 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. Each of the rows in the B matrix corresponds to a pole.

Project Goal

So, let's go back to the beginning now: we want to approximate the discriminant variety of a tetranomial, given its support, in order to determine the number of real zeroes, given its coefficients.
First, we need to understand some properties of the reduced A-discriminant; let's go back to the earlier example, with $A=\left[\begin{array}{llll}0 & 1 & 2 & 3\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -2 & -3 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. Each of the rows in the B matrix corresponds to a pole.

Implementing Our New Approximation

So, given what we know about the reduced A-discriminant variety, we implement the following approximation

Implementing Our New Approximation

So, given what we know about the reduced A-discriminant variety, we implement the following approximation
(1) For orthants without a cusp (more on this later!), we use the contour of the amoebae of a family of simple trinomials: $x+y-1=0$

Implementing Our New Approximation

So, given what we know about the reduced A-discriminant variety, we implement the following approximation
(1) For orthants without a cusp (more on this later!), we use the contour of the amoebae of a family of simple trinomials: $x+y-1=0$

Definition

The Amoeba of a polynomial is the coordinate-wise $\log |\bullet|$ of its zero set.

Implementing Our New Approximation

So, given what we know about the reduced A-discriminant variety, we implement the following approximation
(1) For orthants without a cusp (more on this later!), we use the contour of the amoebae of a family of simple trinomials: $x+y-1=0$

Definition

The Amoeba of a polynomial is the coordinate-wise $\log |\bullet|$ of its zero set.
(2) From this, we get the curve defined by $y=\log \left(1-e^{x}\right)$

Implementing Our New Approximation

So, given what we know about the reduced A-discriminant variety, we implement the following approximation
(1) For orthants without a cusp (more on this later!), we use the contour of the amoebae of a family of simple trinomials: $x+y-1=0$

Definition

The Amoeba of a polynomial is the coordinate-wise $\log |\bullet|$ of its zero set.
(2) From this, we get the curve defined by $y=\log \left(1-e^{x}\right)$
(3) Now, we apply rotations given by the rays in each orthant...

Implementing Our New Approximation

After we have applied the proper rotations given by the rays, we compute the constant determining the sharpness of the curve from the angle formed by the rays.

Implementing Our New Approximation

After we have applied the proper rotations given by the rays, we compute the constant determining the sharpness of the curve from the angle formed by the rays.
In most orthants, this curve matches nearly perfectly with the one parameterized by HKU...but what about cusps?

Implementing Our New Approximation

We call critical points of the map given by HKU cusps.

Within 1 unit of the cusp, our approximation is no good!

Implementing Our New Approximation

We call critical points of the map given by HKU cusps.

Within 1 unit of the cusp, our approximation is no good!
So, we use it only when the inputted point is outside of the circle shown above. When inside, we use another familiar curve, of the form $y^{3}=x^{2}$

Implementing Our New Approximation

We call critical points of the map given by HKU cusps.

Within 1 unit of the cusp, our approximation is no good!
So, we use it only when the inputted point is outside of the circle shown above. When inside, we use another familiar curve, of the form $y^{3}=x^{2}$

Once again, we apply rotation and sharpen the curve according to the rays and the angle they form. The shape is not always symmetrical, so a little trick is needed there.

Implementing Our New Approximation

To solve for the cusp, we solve a simple system of equations given by the partial derivatives of the map given by HKU.

Implementing Our New Approximation

To solve for the cusp, we solve a simple system of equations given by the partial derivatives of the map given by HKU.
So, in each orthant we have approximated the reduced discriminant variety. Now, determining sidedness is simple:

Implementing Our New Approximation

To solve for the cusp, we solve a simple system of equations given by the partial derivatives of the map given by HKU.
So, in each orthant we have approximated the reduced discriminant variety. Now, determining sidedness is simple:
(1) Take $\log |\bullet|$ of input point in 4D coefficient space
(2) Multiply by B matrix
(3) Identify proper orthant
(4) Evaluate expression approximating curve in that orthant
(5) Number of zeroes is given by Viro diagram

Implementing Our New Approximation

Example: input point $[-0.05,0.8,-3,3]$, produces output 3 real, positive roots

References

Israel M. Gelfand, Mikhail M. Kapranov, Andrei V. Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants.
J. Maurice Rojas, Korben Rusek. A-discriminants for Complex Exponents, and Counting Real Isotopy Types.
Korbe Rusek. A-discriminant Varieties and Amoebae
Joann Coronado, Samuel Perez-Ayala, Bithuan Yuan. Visualizing A-discriminant Varieties and their Tropicalizations

Franziska Schroeter, Timo de Wolff. The Boundary of Amoebas

Thank you for listening!

