Efficient Point Counting on Curves: Methods and Applications

Garrett Credi

July 18, 2022

Project Goals

High Level: Determine number of points on a curve $\bmod p^{k}$ quickly.

Project Goals

High Level: Determine number of points on a curve $\bmod p^{k}$ quickly.
Specifically:

- Input: A polynomial $f \in \mathbb{Z}[x, y]$, a prime p, and $k>0$.
- Output: $N_{p, k}(f)=\left|\left\{\left.\zeta \in\left(\frac{\mathbb{Z}}{p^{k} \mathbb{Z}}\right)^{2} \right\rvert\, f(\zeta) \equiv 0 \bmod p^{k}\right\}\right|$
- Complexity: Polynomial in $\operatorname{deg}(f), \log (p)$ and k

Project Goals

High Level: Determine number of points on a curve $\bmod p^{k}$ quickly.
Specifically:

- Input: A polynomial $f \in \mathbb{Z}[x, y]$, a prime p, and $k>0$.
- Output: $N_{p, k}(f)=\left|\left\{\zeta \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{2} \mid f(\zeta) \equiv 0 \bmod p^{k}\right\}\right|$
- Complexity: Polynomial in $\operatorname{deg}(f), \log (p)$ and k

For the remainder of the talk we denote
$Z_{p, k}(f)=\left\{\zeta \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{2} \mid f(\zeta) \equiv 0 \bmod p^{k}\right\}$

Truncation

Important Observation 1: For a given prime p, all the base rings are related.

Truncation

Important Observation 1: For a given prime p, all the base rings are related.

$$
\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p} \stackrel{\pi_{p, 2}}{\leftrightarrows} \mathbb{Z} / p^{2} \mathbb{Z} \stackrel{\pi_{p, 3}}{\leftrightarrows} \mathbb{Z} / p^{3} \mathbb{Z} \stackrel{\pi_{p, 4}}{\leftrightarrows} \mathbb{Z} / p^{4} \mathbb{Z} \stackrel{\pi_{p, 5}}{\leftrightarrows} \cdots \longleftarrow \mathbb{Z}_{p}
$$

Where the horizontal maps are 'truncations':

$$
\begin{gathered}
\pi_{p, k}: \frac{\mathbb{Z}}{p^{k} \mathbb{Z}} \rightarrow \frac{\mathbb{Z}}{p^{k-1}} \mathbb{Z} \\
{[n] \mapsto\left[\begin{array}{ll}
n & \bmod p^{k-1}
\end{array}\right]}
\end{gathered}
$$

And \mathbb{Z}_{p} is the ' p -adic integers'.

Beginning Lifting

Consequently, we get maps $\pi_{p, k}(f): Z_{p, k}(f) \rightarrow Z_{p, k-1}(f)$.

Beginning Lifting

Consequently, we get maps $\pi_{p, k}(f): Z_{p, k}(f) \rightarrow Z_{p, k-1}(f)$. Inductively, $\left|Z_{p, k}(f)\right|=\sum_{\zeta \in Z_{p, k-1}(f)}\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$.
How can we get information about $\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$?

Beginning Lifting

Consequently, we get maps $\pi_{p, k}(f): Z_{p, k}(f) \rightarrow Z_{p, k-1}(f)$. Inductively, $\left|Z_{p, k}(f)\right|=\sum_{\zeta \in Z_{p, k-1}(f)}\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$.
How can we get information about $\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$? Hensel's Lemma!

Beginning Lifting

Consequently, we get maps $\pi_{p, k}(f): Z_{p, k}(f) \rightarrow Z_{p, k-1}(f)$. Inductively, $\left|Z_{p, k}(f)\right|=\sum_{\zeta \in Z_{p, k-1}(f)}\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$.
How can we get information about $\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$? Hensel's Lemma!
Firstly, note that $\pi_{p, k}^{-1}(\zeta)=\left\{\zeta+p^{k-1} d \mid d \in \mathbb{F}_{p}\right\}$.

Beginning Lifting

Consequently, we get maps $\pi_{p, k}(f): Z_{p, k}(f) \rightarrow Z_{p, k-1}(f)$. Inductively, $\left|Z_{p, k}(f)\right|=\sum_{\zeta \in Z_{p, k-1}(f)}\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$.
How can we get information about $\left|\pi_{p, k}(f)^{-1}(\zeta)\right|$? Hensel's Lemma!
Firstly, note that $\pi_{p, k}^{-1}(\zeta)=\left\{\zeta+p^{k-1} d \mid d \in \mathbb{F}_{p}\right\}$. E.g. for
$[3] \in \mathbb{Z} / 5^{1} \mathbb{Z}, \pi_{5,2}^{-1}([3])=$
$\{[3+0 \cdot 5],[3+1 \cdot 5],[3+2 \cdot 5],[3+3 \cdot 5],[3+4 \cdot 5]\}$

Hensel Lifting

If we have $\zeta^{\prime} \in \pi_{p, k}(f)^{-1}(\zeta)$ then $\zeta^{\prime}=\zeta+p^{k-1} \cdot d$ for $d \in \mathbb{F}_{p}^{2}$ (since ζ is a coordinate-pair).

Hensel Lifting

If we have $\zeta^{\prime} \in \pi_{p, k}(f)^{-1}(\zeta)$ then $\zeta^{\prime}=\zeta+p^{k-1} \cdot d$ for $d \in \mathbb{F}_{p}^{2}$ (since ζ is a coordinate-pair).
So then, when does $f\left(\zeta+p^{k-1} \cdot d\right) \equiv 0 \bmod p^{k}$?

Hensel Lifting

If we have $\zeta^{\prime} \in \pi_{p, k}(f)^{-1}(\zeta)$ then $\zeta^{\prime}=\zeta+p^{k-1} \cdot d$ for $d \in \mathbb{F}_{p}^{2}$ (since ζ is a coordinate-pair).
So then, when does $f\left(\zeta+p^{k-1} \cdot d\right) \equiv 0 \bmod p^{k}$?
By Taylor-expanding f about ζ we see that $f\left(\zeta+p^{k-1} \cdot d\right)=f(\zeta)+p^{k-1}(\nabla f)(\zeta) \cdot d+\mathcal{O}\left(p^{k}\right)$.

Hensel Lifting

If we have $\zeta^{\prime} \in \pi_{p, k}(f)^{-1}(\zeta)$ then $\zeta^{\prime}=\zeta+p^{k-1} \cdot d$ for $d \in \mathbb{F}_{p}^{2}$
(since ζ is a coordinate-pair).
So then, when does $f\left(\zeta+p^{k-1} \cdot d\right) \equiv 0 \bmod p^{k}$?
By Taylor-expanding f about ζ we see that $f\left(\zeta+p^{k-1} \cdot d\right)=f(\zeta)+p^{k-1}(\nabla f)(\zeta) \cdot d+\mathcal{O}\left(p^{k}\right)$.
Therefore
$\zeta+p^{k-1} d \in \pi_{p, k}(f)^{-1}(\zeta) \Longleftrightarrow p^{k-1}(\nabla f)(\zeta) \cdot d \equiv-f(\zeta) \quad \bmod p^{k}$

Recasting Hensel Lifting

Note that, since $\zeta \in Z_{p, k-1}(f), f(\zeta)=p^{k-1} \cdot z$ for some $z \in \mathbb{Z}$.

Recasting Hensel Lifting

Note that, since $\zeta \in Z_{p, k-1}(f), f(\zeta)=p^{k-1} \cdot z$ for some $z \in \mathbb{Z}$. Therefore $f\left(\zeta+p^{k-1} d\right) \equiv p^{k-1}(z+(\nabla f)(\zeta) \cdot d) \bmod p^{k}$. So lifting ζ now involves solving the auxiliary equation

$$
p^{k-1}(z+(\nabla f)(\zeta) \cdot d) \equiv 0 \quad \bmod p^{k}
$$

Recasting Hensel Lifting

Note that, since $\zeta \in Z_{p, k-1}(f), f(\zeta)=p^{k-1} \cdot z$ for some $z \in \mathbb{Z}$. Therefore $f\left(\zeta+p^{k-1} d\right) \equiv p^{k-1}(z+(\nabla f)(\zeta) \cdot d) \bmod p^{k}$. So lifting ζ now involves solving the auxiliary equation

$$
\begin{gathered}
p^{k-1}(z+(\nabla f)(\zeta) \cdot d) \equiv 0 \quad \bmod p^{k} \\
z+(\nabla f)(\zeta) \cdot d \equiv 0 \quad \bmod p
\end{gathered}
$$

Recasting Hensel Lifting cont.

$$
z+(\nabla f)(\zeta) \cdot d \equiv 0 \quad \bmod p
$$

Recasting Hensel Lifting cont.

$$
z+(\nabla f)(\zeta) \cdot d \equiv 0 \quad \bmod p
$$

Equation is guaranteed to have p solutions if $(\nabla f)(\zeta) \not \equiv \overrightarrow{0} \bmod p$.

Recasting Hensel Lifting cont.

$$
z+(\nabla f)(\zeta) \cdot d \equiv 0 \quad \bmod p
$$

Equation is guaranteed to have p solutions if $(\nabla f)(\zeta) \not \equiv \overrightarrow{0} \bmod p$. I.e. $\zeta \bmod p$ is a non-singular point on $f \bmod p$!

Recasting Hensel Lifting cont.

$$
z+(\nabla f)(\zeta) \cdot d \equiv 0 \quad \bmod p
$$

Equation is guaranteed to have p solutions if $(\nabla f)(\zeta) \not \equiv \overrightarrow{0} \bmod p$. I.e. $\zeta \bmod p$ is a non-singular point on $f \bmod p$! Instead of needing all the $\bmod p^{k}$ information, the behavior of a \mathbb{F}_{p} root $\bar{\zeta}$ is enough to determine how higher powers lift.

Recasting Hensel Lifting cont.

$$
z+(\nabla f)(\zeta) \cdot d \equiv 0 \quad \bmod p
$$

Equation is guaranteed to have p solutions if $(\nabla f)(\zeta) \not \equiv \overrightarrow{0} \bmod p$. I.e. $\zeta \bmod p$ is a non-singular point on $f \bmod p$! Instead of needing all the $\bmod p^{k}$ information, the behavior of a \mathbb{F}_{p} root $\bar{\zeta}$ is enough to determine how higher powers lift. What if we have a singular \mathbb{F}_{p} root?

The Case of Singular Roots

Given an \mathbb{F}_{p} root $\zeta=(x, y)$, we know that its lifts to $\mathbb{Z} / p^{k} \mathbb{Z}$ must be of the form $\zeta+p d, d=\left(x_{0}, y_{0}\right) \in\left(\mathbb{Z} / p^{k-1} \mathbb{Z}\right)^{2}$.

The Case of Singular Roots

Given an \mathbb{F}_{p} root $\zeta=(x, y)$, we know that its lifts to $\mathbb{Z} / p^{k} \mathbb{Z}$ must be of the form $\zeta+p d, d=\left(x_{0}, y_{0}\right) \in\left(\mathbb{Z} / p^{k-1} \mathbb{Z}\right)^{2}$.

$$
f(\zeta+p d)=f(\zeta)+\sum_{n=1}^{\infty} p^{n} \sum_{i+j=n} \frac{1}{i!j!} \frac{\partial^{n} f}{\partial x^{i} \partial y^{j}}(\zeta) x_{0}^{i} y_{0}^{j}
$$

Similarly to how we factored out a p^{k-1} in the previous slide to reduce f, we define $s(f, \zeta)=\min _{i, j \geq 0}\left\{i+j+\frac{1}{i!j!} \frac{\partial^{n} f}{\partial x^{i} \partial y^{j}}(\zeta)\right\}$

The Case of Singular Roots

Given an \mathbb{F}_{p} root $\zeta=(x, y)$, we know that its lifts to $\mathbb{Z} / p^{k} \mathbb{Z}$ must be of the form $\zeta+p d, d=\left(x_{0}, y_{0}\right) \in\left(\mathbb{Z} / p^{k-1} \mathbb{Z}\right)^{2}$.

$$
f(\zeta+p d)=f(\zeta)+\sum_{n=1}^{\infty} p^{n} \sum_{i+j=n} \frac{1}{i!j!} \frac{\partial^{n} f}{\partial x^{i} \partial y^{j}}(\zeta) x_{0}^{i} y_{0}^{j}
$$

Similarly to how we factored out a p^{k-1} in the previous slide to reduce f, we define $s(f, \zeta)=\min _{i, j \geq 0}\left\{i+j+\frac{1}{i!j!} \frac{\partial^{n} f}{\partial x^{i} \partial y^{j}}(\zeta)\right\}$ This is so that $p^{s(f, \zeta)} \| f(\zeta+p d)$ (i.e. perfectly divides).

Point Counting Formula

With that notation, let $f_{k, \zeta}$ be such that $f(\zeta+p d) \equiv p^{s(f, \zeta)} f_{k, \zeta}(d)$ $\bmod p^{k}$.

Point Counting Formula

With that notation, let $f_{k, \zeta}$ be such that $f(\zeta+p d) \equiv p^{s(f, \zeta)} f_{k, \zeta}(d)$ $\bmod p^{k}$.
If $s(f, \zeta) \geq k$ then we have $p^{2(k-1)}$ many lifts as every point $\zeta^{\prime} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{2}$ of the form $\zeta+p d, d \in\left(\mathbb{Z} / p^{k-1} \mathbb{Z}\right)$ satisfies the congruence.

Point Counting Formula

With that notation, let $f_{k, \zeta}$ be such that $f(\zeta+p d) \equiv p^{s(f, \zeta)} f_{k, \zeta}(d)$ $\bmod p^{k}$.
If $s(f, \zeta) \geq k$ then we have $p^{2(k-1)}$ many lifts as every point $\zeta^{\prime} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{2}$ of the form $\zeta+p d, d \in\left(\mathbb{Z} / p^{k-1} \mathbb{Z}\right)$ satisfies the congruence.
Similarly if $s(f, \zeta)<k$ for every root in $Z_{p, k-s(f, \zeta)}\left(f_{k, \zeta}\right)$ there are $p^{2(s(f, \zeta)-1)}$ lifts by considering p -adic digits.

Point Counting Formula

With that notation, let $f_{k, \zeta}$ be such that $f(\zeta+p d) \equiv p^{s(f, \zeta)} f_{k, \zeta}(d)$ $\bmod p^{k}$.
If $s(f, \zeta) \geq k$ then we have $p^{2(k-1)}$ many lifts as every point $\zeta^{\prime} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{2}$ of the form $\zeta+p d, d \in\left(\mathbb{Z} / p^{k-1} \mathbb{Z}\right)$ satisfies the congruence.
Similarly if $s(f, \zeta)<k$ for every root in $Z_{p, k-s(f, \zeta)}\left(f_{k, \zeta}\right)$ there are $p^{2(s(f, \zeta)-1)}$ lifts by considering p -adic digits. Thus, letting $n_{s}(f)=\left|\left\{\zeta \in Z_{p, 1}(f) \mid(\nabla f)(\zeta) \neq \overrightarrow{0}\right\}\right|$ we have:

Point Counting Recurrence Formula

$$
\begin{aligned}
& \left|Z_{p, k}(f)\right|=n_{s}(f) p^{k-1}+\sum_{\substack{\zeta \in Z_{p, 1}(f) \\
s(f, \zeta) \geq k}} p^{2(k-1)}+ \\
& \quad \sum_{\substack{\zeta \in Z_{p, 1}(f) \\
2 \leq s(f, \zeta)<k}} p^{2(s(f, \zeta)-1)}\left|N_{p, k-s(f, \zeta)}\left(f_{k, \zeta}\right)\right|
\end{aligned}
$$

Examining $Z_{p, 1}(f)$

The recurrence involves knowing how many non-singular points there are on $f \bmod p$ as well as knowing the singular roots. To determine the number of total points on $Z_{p, 1}(f)$ we can use an algorithm thanks to (Harvey):

Examining $Z_{p, 1}(f)$

The recurrence involves knowing how many non-singular points there are on $f \bmod p$ as well as knowing the singular roots. To determine the number of total points on $Z_{p, 1}(f)$ we can use an algorithm thanks to (Harvey):

国 Theorem 3.1 (Trace formula). Let $\bar{F} \in \mathbf{F}_{q}[x]_{d}$ and let X be the hypersurface in $\mathbf{T}_{\mathbf{F}_{q}}^{n}$ cut Out by \bar{F}. Let r, λ and τ be positive integers satisfying

$$
\begin{equation*}
\tau \geq \frac{\lambda}{(p-1) a r} \tag{3.3}
\end{equation*}
$$

Let $F \in \mathbf{Z}_{q}[x]_{d}$ be any lift of \bar{F}. Then

$$
\left|X\left(\mathbf{F}_{q^{r}}\right)\right|=\left(q^{r}-1\right)^{n} \sum_{s=0}^{\lambda+\tau-1} \alpha_{s} \operatorname{tr}\left(A_{F^{s}}^{a r}\right) \quad\left(\bmod p^{\lambda}\right)
$$

where

$$
\alpha_{s}=(-1)^{s} \sum_{t=0}^{\tau-1}\binom{-\lambda}{t}\binom{\lambda}{s-t} \in \mathbf{Z}
$$

and where $A_{F^{s}}$ is regarded as a linear operator on $\mathbf{Z}_{q}[x]_{d s}$.

Figure: (Harvey)p. 9

Simplifying Harvey?

Unfortunately, the algorithm Harvey describes runs in $\sqrt{p} \log (p)^{1+\epsilon}$-time (ignoring the degree of f).

Simplifying Harvey?

Unfortunately, the algorithm Harvey describes runs in
$\sqrt{p} \log (p)^{1+\epsilon}$-time (ignoring the degree of f).
Yet many of the terms involved in the theorem can be simplified in the case of point counting over \mathbb{F}_{p}. Perhaps it can speed up the algorithm?

Simplifying Harvey?

Unfortunately, the algorithm Harvey describes runs in
$\sqrt{p} \log (p)^{1+\epsilon}$-time (ignoring the degree of f).
Yet many of the terms involved in the theorem can be simplified in the case of point counting over \mathbb{F}_{p}. Perhaps it can speed up the algorithm?
The central term in the theorem is $\operatorname{tr}\left(A_{F^{s}}^{a r}\right)$, where F is the homogenization of f (i.e.
$\left.F \in \mathbb{Z}[X, Y, Z], F(X, Y, Z)=Z^{\operatorname{deg}(f)} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)\right)$.

Simplifying Harvey? cont.

Crucially, Harvey provides a lemma that provides a matrix representation for $A_{F}^{a r}$.

Simplifying Harvey? cont.

Crucially, Harvey provides a lemma that provides a matrix representation for $A_{F s}^{a r}$.
Say $\operatorname{deg}\left(F^{s}\right)=d$. The matrix M is indexed by degree d monomials, so for $u, v \in \mathbb{Z}[X, Y, Z]_{d}$ (after identifying a monomial with their exponent vector), $M_{(u, v)}=\left(F^{s(p-1)}\right)_{(p v-u)}$.

Simplifying Harvey? cont.

Crucially, Harvey provides a lemma that provides a matrix representation for $A_{F s}^{a r}$.
Say $\operatorname{deg}\left(F^{s}\right)=d$. The matrix M is indexed by degree d monomials, so for $u, v \in \mathbb{Z}[X, Y, Z]_{d}$ (after identifying a monomial with their exponent vector), $M_{(u, v)}=\left(F^{s(p-1)}\right)_{(p v-u)}$.

$$
\operatorname{tr}\left(A_{F^{s}}^{a r}\right)=\operatorname{tr}(M)=\sum_{u \in \mathbb{Z}[X, Y, Z]_{d}}\left(F^{s(p-1)}\right)_{(p-1) u}
$$

Example Trace Computation

For example, if $F=Z Y^{2}-X^{3}-Z X^{2}, s=1, p=3$ then $F^{s(p-1)}=X^{6}+2 X^{5} Z-2 X^{3} Y^{2} Z+X^{4} Z^{2}-2 X^{2} Y^{2} Z^{2}+Y^{4} Z^{2}=$ $\left(X^{6}+X^{4} Z^{2}-2 X^{2} Y^{2} Z^{2}+Y^{4} Z^{2}\right)+2 X^{5} Z-2 X^{3} Y^{2} Z$.

Example Trace Computation

For example, if $F=Z Y^{2}-X^{3}-Z X^{2}, s=1, p=3$ then $F^{s(p-1)}=X^{6}+2 X^{5} Z-2 X^{3} Y^{2} Z+X^{4} Z^{2}-2 X^{2} Y^{2} Z^{2}+Y^{4} Z^{2}=$ $\left(X^{6}+X^{4} Z^{2}-2 X^{2} Y^{2} Z^{2}+Y^{4} Z^{2}\right)+2 X^{5} Z-2 X^{3} Y^{2} Z$.
Trace is $1+1-2+1=1$.

Harvey Problems

However, I was not able to derive a $\log (p)$ time algorithm to determine this specific coefficient sum.

Harvey Problems

However, I was not able to derive a $\log (p)$ time algorithm to determine this specific coefficient sum.
Major Problem: Like in the previous example the monomials present in F^{s} were $\left\{Z Y^{2}, X^{3}, Z X^{2}\right\}$ but the monomial whose $(p-1)$ powers appeared in $F^{s(p-1)}$ were $\left\{Z Y^{2}, X^{3}, Z X^{2}, X Y Z\right\}$. Determining when monomials 'interacted' to give rise to new monomials in the exponentiation was very difficult.

Harvey Problems

However, I was not able to derive a $\log (p)$ time algorithm to determine this specific coefficient sum.
Major Problem: Like in the previous example the monomials present in F^{s} were $\left\{Z Y^{2}, X^{3}, Z X^{2}\right\}$ but the monomial whose $(p-1)$ powers appeared in $F^{s(p-1)}$ were $\left\{Z Y^{2}, X^{3}, Z X^{2}, X Y Z\right\}$. Determining when monomials 'interacted' to give rise to new monomials in the exponentiation was very difficult.
Thus, in a similar vein to previous REU's, using the \sqrt{p} algorithm will have to suffice.

Too Many Singular Points

To recall, we had to iterate over the \mathbb{F}_{p} singular points of f in the point counting formula. Now, for nice curves, the number of singular points is generally sublinear in p (i.e. the ideal $\left\langle f, \partial_{x} f, \partial_{y} f\right\rangle$ is a zero dimensional ideal).

Too Many Singular Points

To recall, we had to iterate over the \mathbb{F}_{p} singular points of f in the point counting formula. Now, for nice curves, the number of singular points is generally sublinear in p (i.e. the ideal $\left\langle f, \partial_{x} f, \partial_{y} f\right\rangle$ is a zero dimensional ideal).
Unfortunately, in cases where $f \bmod p$ is not a square-free polynomial, the number of singular points is $\mathcal{O}(p)$.

(g, p, k) Valuative Decompositions

Say we have a $g \in \mathbb{F}_{p}[x, y]$ such that $g^{2} \mid f \bmod p$. Decompose f in the following manner: $f=\sum_{i=0}^{k-1} p^{i} g^{e_{i}} h_{i}$.

(g, p, k) Valuative Decompositions

Say we have a $g \in \mathbb{F}_{p}[x, y]$ such that $g^{2} \mid f \bmod p$. Decompose f in the following manner: $f=\sum_{i=0}^{k-1} p^{i} g^{e_{i}} h_{i}$.
One of the sub-goals of this project was, in such a case as above, to determine $\left|Z_{p, k}(f) \cap Z_{p, k}(g)\right|$.

(g, p, k) Valuative Decompositions

Say we have a $g \in \mathbb{F}_{p}[x, y]$ such that $g^{2} \mid f \bmod p$. Decompose f in the following manner: $f=\sum_{i=0}^{k-1} p^{i} g^{e_{i}} h_{i}$.
One of the sub-goals of this project was, in such a case as above, to determine $\left|Z_{p, k}(f) \cap Z_{p, k}(g)\right|$.
If $\forall i, e_{i} \geq 1$, then $\left|Z_{p, k}(f) \cap Z_{p, k}(g)\right|=\left|Z_{p, k}(g)\right|$.

(g, p, k) Valuative Decompositions

Say we have a $g \in \mathbb{F}_{p}[x, y]$ such that $g^{2} \mid f \bmod p$. Decompose f in the following manner: $f=\sum_{i=0}^{k-1} p^{i} g^{e_{i}} h_{i}$.
One of the sub-goals of this project was, in such a case as above, to determine $\left|Z_{p, k}(f) \cap Z_{p, k}(g)\right|$.
If $\forall i, e_{i} \geq 1$, then $\left|Z_{p, k}(f) \cap Z_{p, k}(g)\right|=\left|Z_{p, k}(g)\right|$.
Otherwise, $f=\sum_{\substack{0 \leq i<p \\ e_{i} \neq 0}} p^{i} g^{e_{i}} h_{i}+\sum_{\substack{0 \leq i<p \\ e_{i}=0}} p^{i} h_{i}$.
To count how many $\zeta \in Z_{p, k}(f) \cap Z_{p, k}(g)$, notice if $g(\zeta) \equiv 0$ $\bmod p^{k}$ then $f(\zeta) \equiv \sum_{\substack{0 \leq i<p \\ e_{i}=0}} p^{i} h_{i}(\zeta)$.
Set $\nu=\min \left\{i \mid e_{i}=0\right\}$.

Current Approach to Intersection Counting

Therefore, the number of solutions to the system

$$
\begin{cases}f \equiv 0 & \bmod p^{k} \\ g \equiv 0 & \bmod p^{k}\end{cases}
$$

is the same as the number of solutions to the system

$$
\left\{\begin{array}{l}
p^{-\nu} \sum_{\substack{0 \leq i<p \\
e_{i}=0}} p^{i} h_{i} \equiv 0 \quad \bmod p^{k-\nu} \\
g \equiv 0 \quad \bmod p^{k}
\end{array}\right.
$$

References

(Harvey, David, Computing zeta functions of arithmetic schemes, 2014. doi:10.48550/ARXIV.1402.3439.

