Pseudo-Random Generators

Casmali Lopez and Paisios Woodcock

Simulating Randomness with Binomials

$$
\text { July 17, } 2022
$$

- We a random number.
- We a random number.
- That's hard.

PRG's

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers:

PRG's

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).

PRG's

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this:

PRG's

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this:

Given n-bit input (seed), a PRG outputs a $Q(n)$-bit binary number.

PRG's

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this:

Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

- I.e. given binary 'string' length n (seed), PRG's create length $Q(n)>n$ (expanded) pseudo-random binary sequences

PRG's

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this:

Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

- I.e. given binary 'string' length n (seed), PRG's create length $Q(n)>n$ (expanded) pseudo-random binary sequences

Unpredictability

- A PRG $G\left(x_{0}\right)$, on input seed x_{0}, outputs $\left(y_{1}, \cdots, y_{Q(n)}\right)$ such that:

Unpredictability

- A PRG $G\left(x_{0}\right)$, on input seed x_{0}, outputs $\left(y_{1}, \cdots, y_{Q(n)}\right)$ such that: Given x_{0}, we can easily compute $\left(y_{1}, \cdots, y_{Q(n)}\right)$, but it takes an adversary a long time to compute y_{i+1} given y_{1}, \cdots, y_{i}, but not x_{0}.

Unpredictability

- A PRG $G\left(x_{0}\right)$, on input seed x_{0}, outputs $\left(y_{1}, \cdots, y_{Q(n)}\right)$ such that: Given x_{0}, we can easily compute $\left(y_{1}, \cdots, y_{Q(n)}\right)$, but it takes an adversary a long time to compute y_{i+1} given y_{1}, \cdots, y_{i}, but not x_{0}.
- I.e. To predict with accuracy better than a half takes a long time.

Unpredictability

- A PRG $G\left(x_{0}\right)$, on input seed x_{0}, outputs $\left(y_{1}, \cdots, y_{Q(n)}\right)$ such that: Given x_{0}, we can easily compute $\left(y_{1}, \cdots, y_{Q(n)}\right)$, but it takes an adversary a long time to compute y_{i+1} given y_{1}, \cdots, y_{i}, but not x_{0}.
- I.e. To predict with accuracy better than a half takes a long time.
- Put one last way:

Unpredictability

- A PRG $G\left(x_{0}\right)$, on input seed x_{0}, outputs $\left(y_{1}, \cdots, y_{Q(n)}\right)$ such that: Given x_{0}, we can easily compute $\left(y_{1}, \cdots, y_{Q(n)}\right)$, but it takes an adversary a long time to compute y_{i+1} given y_{1}, \cdots, y_{i}, but not x_{0}.
- I.e. To predict with accuracy better than a half takes a long time.
- Put one last way: No algorithm running within a certain time limit can predict a next bit for a fraction much better than $\frac{1}{2}$ of all inputs (i.e. better than guessing).

Details

- A function $f(n) \in n^{\omega(1)}$ iff $f(n)$ is asympototically bigger than any polynomial in n.

Details

- A function $f(n) \in n^{\omega(1)}$ iff $f(n)$ is asympototically bigger than any polynomial in n.
I.e. For any polynomial $p(n)$,
$\exists n_{0}$ such that $n>n_{0} \Longrightarrow f(n)>p(n)$.

Details

- A function $f(n) \in n^{\omega(1)}$ iff $f(n)$ is asympototically bigger than any polynomial in n.
I.e. For any polynomial $p(n)$,
$\exists n_{0}$ such that $n>n_{0} \Longrightarrow f(n)>p(n)$.
- A $\Gamma \Upsilon-\mathrm{PRG}$ is a family of functions $G=\left\{G_{n}\right\}$,

Details

- A function $f(n) \in n^{\omega(1)}$ iff $f(n)$ is asympototically bigger than any polynomial in n.
I.e. For any polynomial $p(n)$,
$\exists n_{0}$ such that $n>n_{0} \Longrightarrow f(n)>p(n)$.
- A $\Gamma \Upsilon-\mathrm{PRG}$ is a family of functions $G=\left\{G_{n}\right\}$, where $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{Q(n)}$ and $Q(n)>n$,

Details

- A function $f(n) \in n^{\omega(1)}$ iff $f(n)$ is asympototically bigger than any polynomial in n.
I.e. For any polynomial $p(n)$,
$\exists n_{0}$ such that $n>n_{0} \Longrightarrow f(n)>p(n)$.
- A $\Gamma \Upsilon-\mathrm{PRG}$ is a family of functions $G=\left\{G_{n}\right\}$, where $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{Q(n)}$ and $Q(n)>n$, s.t. for any algorithm $A \in \Gamma$ and any $i \in\{1, \cdots, Q(n)-1\}$, $\left|\operatorname{Prob}_{x_{0} \in\{0,1\}^{n}}\left(A\left[y_{1}, \cdots, y_{i}\right]=y_{i+1}\right)-\frac{1}{2}\right| \in \frac{1}{n^{\omega(1)}}$,

Details

- A function $f(n) \in n^{\omega(1)}$ iff $f(n)$ is asympototically bigger than any polynomial in n.
I.e. For any polynomial $p(n)$,
$\exists n_{0}$ such that $n>n_{0} \Longrightarrow f(n)>p(n)$.
- A $\Gamma \Upsilon-\mathrm{PRG}$ is a family of functions $G=\left\{G_{n}\right\}$, where $G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{Q(n)}$ and $Q(n)>n$, s.t. for any algorithm $A \in \Gamma$ and any $i \in\{1, \cdots, Q(n)-1\}$, $\left|\operatorname{Prob}_{x_{0} \in\{0,1\}^{n}}\left(A\left[y_{1}, \cdots, y_{i}\right]=y_{i+1}\right)-\frac{1}{2}\right| \in \frac{1}{n^{\omega(1)}}$, and G computes in time on $O(\Upsilon)$ (in $n)$.

Significance

- Applications include Procedural Simulations of Nature

- Real Applications typically use (mathematically speaking) pretty horrible PRG's.
- Hackers can know your method of generating... just not the seed. Keeping the seed hidden is what matters most. Humans choose the seed.
- Symmetric Key Cryptography Applications (seed is key)

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique:

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x,

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \cdots, f^{(Q(n))}(x)$.

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \cdots, f^{(Q(n))}(x)$. Take $B(f(x)), B(f(f(x))), \cdots, B\left(f^{(Q(n))}\right)$

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \cdots, f^{(Q(n))}(x)$.
Take $B(f(x)), B(f(f(x))), \cdots, B\left(f^{(Q(n))}\right)$, and REVERSE order!

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \cdots, f^{(Q(n))}(x)$. Take $B(f(x)), B(f(f(x))), \cdots, B\left(f^{(Q(n))}\right)$, and REVERSE order!
- $G_{n}(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$ for n-bit seed x

Blum-Micali PRG

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \cdots, f^{(Q(n))}(x)$. Take $B(f(x)), B(f(f(x))), \cdots, B\left(f^{(Q(n))}\right)$, and REVERSE order!
- $G_{n}(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$ for n-bit seed x
- Treats binary expansion of x as n-bit sequence

Example

- Blum and Micali use $f(x)=g^{x}$, where g is a generator for \mathbb{F}_{p}^{*}.

Example

- Blum and Micali use $f(x)=g^{x}$, where g is a generator for \mathbb{F}_{p}^{*}. Choice of seed includes x and g.
- $B(x)=1$ iff the smallest s satisfying $x=g^{s}$ has $s \geq \frac{p-1}{2}$.

Example

- Blum and Micali use $f(x)=g^{x}$, where g is a generator for \mathbb{F}_{p}^{*}. Choice of seed includes x and g.
- $B(x)=1$ iff the smallest s satisfying $x=g^{s}$ has $s \geq \frac{p-1}{2}$. Else 0 .

Example

- Blum and Micali use $f(x)=g^{x}$, where g is a generator for \mathbb{F}_{p}^{*}. Choice of seed includes x and g.
- $B(x)=1$ iff the smallest s satisfying $x=g^{s}$ has $s \geq \frac{p-1}{2}$. Else 0 .
- Equivalently, $B_{p, g}(y)=1$ iff y is the principal square root of $y^{2}(\bmod$ p).

Example

- Blum and Micali use $f(x)=g^{x}$, where g is a generator for \mathbb{F}_{p}^{*}. Choice of seed includes x and g.
- $B(x)=1$ iff the smallest s satisfying $x=g^{s}$ has $s \geq \frac{p-1}{2}$. Else 0 .
- Equivalently, $B_{p, g}(y)=1$ iff y is the principal square root of $y^{2}(\bmod$ p).
- So $G(x)=\left(B\left(g^{g^{\cdots g^{x}}}\right), \cdots, B\left(g^{g^{g^{x}}}\right), B\left(g^{g^{x}}\right), B\left(g^{x}\right)\right)$.

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$.

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x))=B\left(g^{x}\right)$ easy: simply ask whether $x \geq \frac{p-1}{2}$.

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x))=B\left(g^{x}\right)$ easy: simply ask whether $x \geq \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x))=B\left(g^{x}\right)$ easy: simply ask whether $x \geq \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:

1) $x \rightarrow B(f(x))$ (computing $B(f(x))$ from x) is easy

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x))=B\left(g^{x}\right)$ easy: simply ask whether $x \geq \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:

1) $x \rightarrow B(f(x))$ (computing $B(f(x))$ from x) is easy
2) $x \rightarrow B(x)$ cannot be easily computed (Why?)

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x))=B\left(g^{x}\right)$ easy: simply ask whether $x \geq \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:

1) $x \rightarrow B(f(x))$ (computing $B(f(x))$ from x) is easy 2) $x \rightarrow B(x)$ cannot be easily computed (Why?)

- Just given a $y \in \mathbb{F}_{p}^{*}$, deciding whether y is the principal square root of y^{2} is very hard.

Predicate

- For unpredictability, want half of domain to have $B(x)=1$, and other half $B(x)=0$. Otherwise, easy to predict with probability $>\frac{1}{2}$.
- Want $x \rightarrow B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x))=B\left(g^{x}\right)$ easy: simply ask whether $x \geq \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:

1) $x \rightarrow B(f(x))$ (computing $B(f(x))$ from x) is easy 2) $x \rightarrow B(x)$ cannot be easily computed (Why?)

- Just given a $y \in \mathbb{F}_{p}^{*}$, deciding whether y is the principal square root of y^{2} is very hard.

The Why

- Efficiently predicting the next bit of our sequence

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{\text {st }}$ bits from the first i bits.

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{s t}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B\left(f^{(i)}(x)\right)$, since $x \rightarrow B(f(x))$ easy,

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{s t}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B\left(f^{(i)}(x)\right)$, since $x \rightarrow B(f(x))$ easy,
and then we can predict $B(x)$ (by bullet one);

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{s t}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B\left(f^{(i)}(x)\right)$, since $x \rightarrow B(f(x))$ easy,
and then we can predict $B(x)$ (by bullet one); Hence $x \rightarrow B(x)$ is efficiently computable!

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{s t}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B\left(f^{(i)}(x)\right)$, since $x \rightarrow B(f(x))$ easy,
and then we can predict $B(x)$ (by bullet one); Hence $x \rightarrow B(x)$ is efficiently computable!
- That is:

Next bit predictable $\Longrightarrow x \rightarrow B(x)$ easy.

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{s t}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B\left(f^{(i)}(x)\right)$, since $x \rightarrow B(f(x))$ easy,
and then we can predict $B(x)$ (by bullet one); Hence $x \rightarrow B(x)$ is efficiently computable!
- That is:

Next bit predictable $\Longrightarrow x \rightarrow B(x)$ easy.
So, by contrapositive:

The Why

- Efficiently predicting the next bit of our sequence is equivalent to finding $B(x)$ from $B\left(f^{(i)}(x)\right), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{s t}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B\left(f^{(i)}(x)\right)$, since $x \rightarrow B(f(x))$ easy,
and then we can predict $B(x)$ (by bullet one); Hence $x \rightarrow B(x)$ is efficiently computable!
- That is:

Next bit predictable $\Longrightarrow x \rightarrow B(x)$ easy.
So, by contrapositive:
$x \rightarrow B(x)$ hard \Longrightarrow Our PRG Sequence is Unpredictable!

Efficient v. Hard

- By "easy" or "hard", we mean:

Efficient v. Hard

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?

Efficient v. Hard

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_{0} \in \mathbb{N}$ s.t.

Efficient v. Hard

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_{0} \in \mathbb{N}$ s.t.
$n>n_{0} \Longrightarrow f(n) \leq c g(n)$

Efficient v. Hard

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_{0} \in \mathbb{N}$ s.t.
$n>n_{0} \Longrightarrow f(n) \leq c g(n)$
I.e. $f \in O(g)$ if f is eventually bounded above by some multiple of g.

Efficient v. Hard

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_{0} \in \mathbb{N}$ s.t.
$n>n_{0} \Longrightarrow f(n) \leq c g(n)$
I.e. $f \in O(g)$ if f is eventually bounded above by some multiple of g.
- Note: Γ is the set of algorithms computable on $O\left(F_{i}\right)$ for some function F_{i} in a family of functions F.

Binomials

- Let $f(x)=x^{a}+c x^{b}$

Binomials

- Let $f(x)=x^{a}+c x^{b} \in \mathbb{F}_{p}^{*}[x]$,
- Can we use this as a friendly function?
- Let $f(x)=x^{a}+c x^{b} \in \mathbb{F}_{p}^{*}[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:
- Let $f(x)=x^{a}+c x^{b} \in \mathbb{F}_{p}^{*}[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:
$x \rightarrow B\left(x^{a}+c x^{b}\right)$ is easy, but

Binomials

- Let $f(x)=x^{a}+c x^{b} \in \mathbb{F}_{p}^{*}[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:
$x \rightarrow B\left(x^{a}+c x^{b}\right)$ is easy, but $x \rightarrow B(x)$ is hard?
- If we can find a predicate meeting certain conditions (to be seen),

Binomials

- Let $f(x)=x^{a}+c x^{b} \in \mathbb{F}_{p}^{*}[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:
$x \rightarrow B\left(x^{a}+c x^{b}\right)$ is easy, but $x \rightarrow B(x)$ is hard?
- If we can find a predicate meeting certain conditions (to be seen), then yes: this f can make a PRG.

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$.

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.
- Or: How long does it take to solve $x^{a}+c x^{b}-y$ over \mathbb{F}_{p}^{*} ?

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.
- Or: How long does it take to solve $x^{a}+c x^{b}-y$ over \mathbb{F}_{p}^{*} ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.
- Or: How long does it take to solve $x^{a}+c x^{b}-y$ over \mathbb{F}_{p}^{*} ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f=x^{a}+c x^{b}$, find B such that:

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.
- Or: How long does it take to solve $x^{a}+c x^{b}-y$ over \mathbb{F}_{p}^{*} ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f=x^{a}+c x^{b}$, find B such that:

If $x \rightarrow B(x)$ easy, then finding x from $f(x)$ is easy.

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.
- Or: How long does it take to solve $x^{a}+c x^{b}-y$ over \mathbb{F}_{p}^{*} ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f=x^{a}+c x^{b}$, find B such that:

If $x \rightarrow B(x)$ easy, then finding x from $f(x)$ is easy. Hence if solving Trinomials is Hard, (by contrapositive) the PRG condition " $x \rightarrow B(x)$ is hard" is satisfied.

Trinomial Hardness

- Now suppose we're given $y \in \mathbb{F}_{p}^{*}$. How hard is it to find x s.t. $x^{a}+c x^{b}=y(\bmod \mathrm{p}) ? \mathbb{F}_{p}^{*}$.
- Or: How long does it take to solve $x^{a}+c x^{b}-y$ over \mathbb{F}_{p}^{*} ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f=x^{a}+c x^{b}$, find B such that:

If $x \rightarrow B(x)$ easy, then finding x from $f(x)$ is easy. Hence if solving Trinomials is Hard, (by contrapositive) the PRG condition " $x \rightarrow B(x)$ is hard" is satisfied.

- Conditional Result.

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \rightarrow B(y)$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \rightarrow B(y)$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs (where P is some polynomial),

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \rightarrow B(y)$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs (where P is some polynomial), would allow us to efficiently predict the root of $x^{a}+c x^{b}-y$

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \rightarrow B(y)$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs (where P is some polynomial), would allow us to efficiently predict the root of $x^{a}+c x^{b}-y$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs.

Goal

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \rightarrow B(y)$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs (where P is some polynomial), would allow us to efficiently predict the root of $x^{a}+c x^{b}-y$ for a fraction $>\frac{1}{2}+\frac{1}{P(n)}$ of y inputs. (Where p is n-bit)

Note

- What is the fastest known algorithm for solving this trinomial for a root over \mathbb{F}_{p}^{*}
- \sqrt{p}-time. That is, $2^{\frac{n}{2}}$-time.

Inputs (Technicalities)

- $D_{p} \subseteq \mathbb{F}_{p}^{*}$ is the set of inputs to our friendly function f_{p} and predicate B_{p} (dependent on the prime p).
- Size- n inputs to Predicate and Friendly Function:

Inputs (Technicalities)

- $D_{p} \subseteq \mathbb{F}_{p}^{*}$ is the set of inputs to our friendly function f_{p} and predicate B_{p} (dependent on the prime p).
- Size- n inputs to Predicate and Friendly Function: $I_{n}=\left\{(p, x) \mid p\right.$ is n-bit prime $\left.x \in D_{p}\right\}$

Inputs (Technicalities)

- $D_{p} \subseteq \mathbb{F}_{p}^{*}$ is the set of inputs to our friendly function f_{p} and predicate B_{p} (dependent on the prime p).
- Size- n inputs to Predicate and Friendly Function: $I_{n}=\left\{(p, x) \mid p\right.$ is n-bit prime $\left.x \in D_{p}\right\}$
- Friendly function and predicate are sets of functions, dependent on input length n.

Terms

- General Approach: If $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$,
- General Approach: If $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$, We need $B(x)$ to be unpredictable when given x.

Terms

- General Approach: If $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$, We need $B(x)$ to be unpredictable when given x.
- If f is sufficiently 'random' under iteration, why not just use $G(x)=\left(f(x), \cdots, f^{(Q(n))}(x)\right)$?

Terms

- General Approach: If $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$, We need $B(x)$ to be unpredictable when given x.
- If f is sufficiently 'random' under iteration, why not just use $G(x)=\left(f(x), \cdots, f^{(Q(n))}(x)\right)$?
- Need binary output, so have to choose a digit from each.
- And! Hacker can see our function f ! PRG's need to be that strong.

Terms

- General Approach: If $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$, We need $B(x)$ to be unpredictable when given x.
- If f is sufficiently 'random' under iteration, why not just use $G(x)=\left(f(x), \cdots, f^{(Q(n))}(x)\right)$?
- Need binary output, so have to choose a digit from each.
- And! Hacker can see our function f ! PRG's need to be that strong.
- Importance of seed in Symmetric Key Cryptography applications. How it's generated. Knowing seed is everything!

Accessibility

Def A predicate B is v-accessible if there is a probabilistic algorithm with expected run time $v(n)$ such that, on input an n-bit integer, the algorithm outputs some $(p, x) \in I_{n}$ with uniform probability among elements of I_{n};

Accessibility

Def A predicate B is v-accessible if there is a probabilistic algorithm with expected run time $v(n)$ such that, on input an n-bit integer, the algorithm outputs some $(p, x) \in I_{n}$ with uniform probability among elements of I_{n}; or, when it doesn't, it outputs nothing, but only with probability $\frac{1}{2^{c}}$ for some constant c.

- So: A predicate is v-Accessible if its n-bit inputs can be randomly, uniformly sampled from n-bit integers in time $v(n)$; but it allows possibility that there is a small chance your sampling algorithm doesn't work.

Accessibility

Def A predicate B is v-accessible if there is a probabilistic algorithm with expected run time $v(n)$ such that, on input an n-bit integer, the algorithm outputs some $(p, x) \in I_{n}$ with uniform probability among elements of I_{n}; or, when it doesn't, it outputs nothing, but only with probability $\frac{1}{2^{c}}$ for some constant c.

- So: A predicate is v-Accessible if its n-bit inputs can be randomly, uniformly sampled from n-bit integers in time $v(n)$; but it allows possibility that there is a small chance your sampling algorithm doesn't work.
- Typically defined other way:
v is however long it takes to sample inputs uniformly.

Accessability

- Why accessability?

Accessability

- Why accessability? Our PRG takes any n-bit input, but since f_{p} (our friendly function) has to be a permutation on the input (in order to make a PRG), we must restrict the input to some D_{p}.

Accessability

- Why accessability? Our PRG takes any n-bit input, but since f_{p} (our friendly function) has to be a permutation on the input (in order to make a PRG), we must restrict the input to some D_{p}.
- So, given random n-bit integer, we need to quickly get a 'random' n-bit input to our friendly function in order to calculate the PRG.

Unapproximability

Def A predicate B is Γ-unapproximable if no algorithm in Γ can correctly compute $B(x)$ from x for more than a fraction $\frac{1}{2}+\frac{1}{P(n)}$ of all n-bit inputs (p, x), for any polynomial P.

Unapproximability

Def A predicate B is Γ-unapproximable if no algorithm in Γ can correctly compute $B(x)$ from x for more than a fraction $\frac{1}{2}+\frac{1}{P(n)}$ of all n-bit inputs (p, x), for any polynomial P.

- Basically, output of predicate is "unpredictable" (accuracy better than guessing requires enormous computation)

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

- $f_{p} \equiv f(p, \cdot): D_{p} \rightarrow D_{p}$ be a permutation for all n-bit primes

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

- $f_{p} \equiv f(p, \cdot): D_{p} \rightarrow D_{p}$ be a permutation for all n-bit primes
- $f:(p, x) \rightarrow D_{p}$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

- $f_{p} \equiv f(p, \cdot): D_{p} \rightarrow D_{p}$ be a permutation for all n-bit primes
- $f:(p, x) \rightarrow D_{p}$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p, x) \in I \rightarrow B_{p}\left(f_{p}(x)\right)$ also in $\Upsilon\left(\right.$ " $x \rightarrow B_{p}(f(x))$ easy" $)$

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

- $f_{p} \equiv f(p, \cdot): D_{p} \rightarrow D_{p}$ be a permutation for all n-bit primes
- $f:(p, x) \rightarrow D_{p}$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p, x) \in I \rightarrow B_{p}\left(f_{p}(x)\right)$ also in $\Upsilon\left(\right.$ " $x \rightarrow B_{p}(f(x))$ easy" $)$
- B is v-accessible, where $v \in O(\Upsilon)$

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

- $f_{p} \equiv f(p, \cdot): D_{p} \rightarrow D_{p}$ be a permutation for all n-bit primes
- $f:(p, x) \rightarrow D_{p}$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p, x) \in I \rightarrow B_{p}\left(f_{p}(x)\right)$ also in $\Upsilon\left(\right.$ " $x \rightarrow B_{p}(f(x))$ easy" $)$
- B is v-accessible, where $v \in O(\Upsilon)$
- B is Γ-unapproximable. (" $x \rightarrow B_{p}(x)$ hard")

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

- $f_{p} \equiv f(p, \cdot): D_{p} \rightarrow D_{p}$ be a permutation for all n-bit primes
- $f:(p, x) \rightarrow D_{p}$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p, x) \in I \rightarrow B_{p}\left(f_{p}(x)\right)$ also in $\Upsilon\left({ }^{\prime \prime} x \rightarrow B_{p}(f(x))\right.$ easy")
- B is v-accessible, where $v \in O(\Upsilon)$
- B is Γ-unapproximable. (" $x \rightarrow B_{p}(x)$ hard")
- $\Gamma \supseteq \Upsilon$ (otherwise it may be more easily broken than computed.)

Words

In words: if you want a PRG made this way...

- f_{p} depends on p, so to efficiently compute, need to find f_{p} quick and calculate $B\left(f_{p}(x)\right)$ quick.

Words

In words: if you want a PRG made this way...

- f_{p} depends on p, so to efficiently compute, need to find f_{p} quick and calculate $B\left(f_{p}(x)\right)$ quick.
- Need f_{p} to be a permutation on D_{p}.

Words

In words: if you want a PRG made this way...

- f_{p} depends on p, so to efficiently compute, need to find f_{p} quick and calculate $B\left(f_{p}(x)\right)$ quick.
- Need f_{p} to be a permutation on D_{p}.
- Need D_{p} (input to f_{p}) efficiently randomly sample-able

Words

In words: if you want a PRG made this way...

- f_{p} depends on p, so to efficiently compute, need to find f_{p} quick and calculate $B\left(f_{p}(x)\right)$ quick.
- Need f_{p} to be a permutation on D_{p}.
- Need D_{p} (input to f_{p}) efficiently randomly sample-able
- The time it takes to compute $f_{p}(x)$ and $B_{p}\left(f_{p}(x)\right)$ are both on the order of the time it takes to 'access' D_{p}.

Proof of Sufficient Conditions

- $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$ for n-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Proof of Sufficient Conditions

- $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$ for n-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Brief Proof Outline:

Proof of Sufficient Conditions

- $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$ for n-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Brief Proof Outline:

- Generating $G(x)$ requires $Q(n)$ calculations of $B_{p}\left(f_{p}(x)\right)$ and $f(p, \cdot)$, i.e. calculating f and $h_{p} \in \Upsilon$.

Thus generating $G(x)$ takes time in Υ.

Proof of Sufficient Conditions

- $G(x)=\left(B\left(f^{(Q(n))}(x)\right), \cdots, B(f(x))\right)$ for n-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Brief Proof Outline:

- Generating $G(x)$ requires $Q(n)$ calculations of $B_{p}\left(f_{p}(x)\right)$ and $f(p, \cdot)$, i.e. calculating f and $h_{p} \in \Upsilon$.

Thus generating $G(x)$ takes time in Υ.

- If there exists next-bit prediction algorithm in Γ, then use this algorithm to predict $B\left(f^{(i+1)}(x)\right)$ from $B\left(f^{(i)}(x)\right)$: i.e. predict $B(x)$ from x. This contradicts unapproximability (unpredictable output)!

Pause

- What are we doing?

Pause

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.

Pause

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.

Pause

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.

Pause

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ,

Pause

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ, because $\Upsilon \subseteq \Gamma$.
The a, b, c, D_{p} (with $f_{p}(x)=x^{a}+c x^{b}$ being permutation on D_{p}) determine Υ

Pause

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.
Υ, the time it takes to generate the PRG, sets bounds on this Γ, because $\Upsilon \subseteq \Gamma$.
The a, b, c, D_{p} (with $f_{p}(x)=x^{a}+c x^{b}$ being permutation on D_{p}) determine Υ
- Studying what choice of Γ and Υ will work shows how good (if possible) our PRG is.

Neccessary Conditions on PRG's

- Another thing that limits our choice of Γ is what we call Δ.

Neccessary Conditions on PRG's

- Another thing that limits our choice of Γ is what we call Δ.
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^{a}+c x^{b}$ in \mathbb{F}_{p}^{*}, where p is n-bits.

Neccessary Conditions on PRG's

- Another thing that limits our choice of Γ is what we call Δ.
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^{a}+c x^{b}$ in \mathbb{F}_{p}^{*}, where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.

Neccessary Conditions on PRG's

- Another thing that limits our choice of Γ is what we call Δ.
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^{a}+c x^{b}$ in \mathbb{F}_{p}^{*}, where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.
- Recall the definition:

Neccessary Conditions on PRG's

- Another thing that limits our choice of Γ is what we call Δ.
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^{a}+c x^{b}$ in \mathbb{F}_{p}^{*}, where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.
- Recall the definition:
G is a $\Gamma \Upsilon-\mathrm{PRG}$ if no algorithm in Γ can predict with accuracy $\frac{1}{2}+\frac{1}{P(n)}$ for any polynomial P , and G runs in time on $O(\Upsilon)$.

Neccessary Conditions on PRG's

- Another thing that limits our choice of Γ is what we call Δ.
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^{a}+c x^{b}$ in \mathbb{F}_{p}^{*}, where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.
- Recall the definition:
G is a $\Gamma \Upsilon-\mathrm{PRG}$ if no algorithm in Γ can predict with accuracy $\frac{1}{2}+\frac{1}{P(n)}$ for any polynomial P , and G runs in time on $O(\Upsilon)$.

Delta

- Say $\Delta \subseteq \Gamma$.

Delta

- Say $\Delta \subseteq \Gamma$.

Then $\delta \in O(\Gamma)$, so we cannot predict $B(y)$ give y (better than guessing).

Delta

- Say $\Delta \subseteq \Gamma$.

Then $\delta \in O(\Gamma)$, so we cannot predict $B(y)$ give y (better than guessing).
But given y, find x s.t. $f(x)=y$, then $B(f(x))=B(y)$.

Delta

- Say $\Delta \subseteq \Gamma$.

Then $\delta \in O(\Gamma)$, so we cannot predict $B(y)$ give y (better than guessing).
But given y, find x s.t. $f(x)=y$, then $B(f(x))=B(y)$. Doable in time $O(\delta(n))+O(\Upsilon)$, so on $O(\Upsilon)$.

Delta

- Say $\Delta \subseteq \Gamma$.

Then $\delta \in O(\Gamma)$, so we cannot predict $B(y)$ give y (better than guessing).
But given y, find x s.t. $f(x)=y$, then $B(f(x))=B(y)$. Doable in time $O(\delta(n))+O(\Upsilon)$, so on $O(\Upsilon)$.
Contradiction!

- Thus we must have $\Gamma \subsetneq \Delta$.

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.
- How do we choose the a, b, c, D_{p} to make $f_{p}(x)=x^{a}+c x^{b}$ a permutation on D_{p} ?

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.
- How do we choose the a, b, c, D_{p} to make $f_{p}(x)=x^{a}+c x^{b}$ a permutation on D_{p} ? Is this easy?
- Good questions.

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.
- How do we choose the a, b, c, D_{p} to make $f_{p}(x)=x^{a}+c x^{b}$ a permutation on D_{p} ? Is this easy?
- Good questions. That's where the bulk of computation time goes.

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.
- How do we choose the a, b, c, D_{p} to make $f_{p}(x)=x^{a}+c x^{b}$ a permutation on D_{p} ? Is this easy?
- Good questions. That's where the bulk of computation time goes.
- The thing which may keep this binomial from making a PRG is it being "too expensive" to systematically find the a, b, c, D_{p} such that f_{p} is a permutation on D_{p}.

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.
- How do we choose the a, b, c, D_{p} to make $f_{p}(x)=x^{a}+c x^{b}$ a permutation on D_{p} ? Is this easy?
- Good questions. That's where the bulk of computation time goes.
- The thing which may keep this binomial from making a PRG is it being "too expensive" to systematically find the a, b, c, D_{p} such that f_{p} is a permutation on D_{p}.
- Especially because $\left|D_{p}\right| \geq Q(n)$.

Current Bound

- Current Bounds: Calculating $f_{p}(x)$ and $h_{p}(x)$ take time on $O\left(n^{2} \log (n)\right)$.
- How do we choose the a, b, c, D_{p} to make $f_{p}(x)=x^{a}+c x^{b}$ a permutation on D_{p} ? Is this easy?
- Good questions. That's where the bulk of computation time goes.
- The thing which may keep this binomial from making a PRG is it being "too expensive" to systematically find the a, b, c, D_{p} such that f_{p} is a permutation on D_{p}.
- Especially because $\left|D_{p}\right| \geq Q(n)$.
- Can't begin being periodic too quickly, so must have bigger range of outputs of $f(x)$ than elements in the outputted sequence.

Too Expensive?

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.

Too Expensive?

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_{p} and finding D_{p} take too long, Γ skyrockets,

Too Expensive?

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_{p} and finding D_{p} take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.

Too Expensive?

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_{p} and finding D_{p} take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.
- As Γ increases, this becomes a stronger and stronger statement.

Too Expensive?

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_{p} and finding D_{p} take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.
- As Γ increases, this becomes a stronger and stronger statement.
- At very least, need f_{p} and D_{p} computable in time on smaller order than δ (generate faster than break).

Too Expensive?

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_{p} and finding D_{p} take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.
- As Γ increases, this becomes a stronger and stronger statement.
- At very least, need f_{p} and D_{p} computable in time on smaller order than δ (generate faster than break).
- A lower bound on Υ is $n^{2} \log (n)$ (time to calculate each $f_{p}(x)$ when a, b, c, D_{p} are known).

Sanity Check

- Reminder: We're assessing Γ and Υ to see whether binomials can generate PRG's. And D_{p} determines Υ, which determines whether there is a Γ to work.

Bounds

- Suppose finding a root of $f(x)=x^{a}+c x^{b}$ is doable in time on $O\left(n^{2} \log (n)\right)$; that is, trinomials are solvable in time on $O\left(\log ^{2}(p) \log (\log (p))\right)$.

Bounds

- Suppose finding a root of $f(x)=x^{a}+c x^{b}$ is doable in time on $O\left(n^{2} \log (n)\right)$; that is, trinomials are solvable in time on $O\left(\log ^{2}(p) \log (\log (p))\right)$.
- Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!

Bounds

- Suppose finding a root of $f(x)=x^{a}+c x^{b}$ is doable in time on $O\left(n^{2} \log (n)\right)$; that is, trinomials are solvable in time on $O\left(\log ^{2}(p) \log (\log (p))\right)$.
- Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!
- In fact, if finding the root of a d-degree t-nomial f over \mathbb{F}_{p}^{*} is doable in time on $O\left(t \log ^{2}(p) \log (\log (p))\right.$,

Bounds

- Suppose finding a root of $f(x)=x^{a}+c x^{b}$ is doable in time on $O\left(n^{2} \log (n)\right)$; that is, trinomials are solvable in time on $O\left(\log ^{2}(p) \log (\log (p))\right)$.
- Then f cannot be used to create a PRG (for any Γ, Φ, Υ, or B)!
- In fact, if finding the root of a d-degree t-nomial f over \mathbb{F}_{p}^{*} is doable in time on $O\left(t \log ^{2}(p) \log (\log (p))\right.$, then f cannot be used as a friendly function (ever).

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O\left(p \log ^{2}(p) \log (\log (p))\right)$, we need to systematically choose a, b, c, and $D_{p} \subseteq \mathbb{F}_{p}^{*}$ such that $f_{p}(x)=x^{a}+c x^{b}$ is a permutation on D_{p}.

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O\left(p \log ^{2}(p) \log (\log (p))\right)$, we need to systematically choose a, b, c, and $D_{p} \subseteq \mathbb{F}_{p}^{*}$ such that $f_{p}(x)=x^{a}+c x^{b}$ is a permutation on D_{p}.
- What algorithm works?

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O\left(p \log ^{2}(p) \log (\log (p))\right)$, we need to systematically choose a, b, c, and $D_{p} \subseteq \mathbb{F}_{p}^{*}$ such that $f_{p}(x)=x^{a}+c x^{b}$ is a permutation on D_{p}.
- What algorithm works? We don't know any.

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O\left(p \log ^{2}(p) \log (\log (p))\right)$, we need to systematically choose a, b, c, and $D_{p} \subseteq \mathbb{F}_{p}^{*}$ such that $f_{p}(x)=x^{a}+c x^{b}$ is a permutation on D_{p}.
- What algorithm works? We don't know any.But statistically speaking, "good" choices are hard to come by.

Importance of D_{p}

- D_{p} is the restriction of \mathbb{F}_{p}^{*} such that $x^{a}+c x^{b}$ is a permutation on D_{p}.
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O\left(p \log ^{2}(p) \log (\log (p))\right)$, we need to systematically choose a, b, c, and $D_{p} \subseteq \mathbb{F}_{p}^{*}$ such that $f_{p}(x)=x^{a}+c x^{b}$ is a permutation on D_{p}.
- What algorithm works? We don't know any.But statistically speaking, "good" choices are hard to come by.
- D_{p} will be a subset of \mathbb{F}_{p}^{*} that forms a cycle under f_{p}, so this boils down to studying cycle lengths and frequencies of $x^{a}+c x^{b} \in \mathbb{F}_{p}^{*}[x]$.

D_{p} constraints

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds

D_{p} constraints

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_{p}, we need to actually iterate through f_{p} until reaching a repeat.

D_{p} constraints

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_{p}, we need to actually iterate through f_{p} until reaching a repeat.
- Need cycle length at least $Q(n)$,

D_{p} constraints

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_{p}, we need to actually iterate through f_{p} until reaching a repeat.
- Need cycle length at least $Q(n)$, but Cycle Length + Pre-Period Length less than $O(p)$

D_{p} constraints

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_{p}, we need to actually iterate through f_{p} until reaching a repeat.
- Need cycle length at least $Q(n)$, but Cycle Length + Pre-Period Length less than $O(p)$, lest calculating D_{p} takes time on $O(\Delta)$ and the whole PRG is useless.

D_{p} constraints

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_{p}, we need to actually iterate through f_{p} until reaching a repeat.
- Need cycle length at least $Q(n)$, but Cycle Length + Pre-Period Length less than $O(p)$, lest calculating D_{p} takes time on $O(\Delta)$ and the whole PRG is useless.
- Study pre-period and closest-cycle lengths for elements on \mathbb{F}_{p}^{*}

Frequency of Good a, b, c Choices

- So.... What do know about these cycles in F_{p} ?
- The following slides represent some experimental results for various $f(x)$
- $f(x)$ over the Field
- Example of iterating $f(x)$
- Discrete Fourier Analysis(discrepancy) of iteration
- Functional Graph of $f(x)$

Graphs DLP

Figure: $f(x)=11^{x} \bmod 1009, p=1009$, Itervalue: 582(top left), Number of Components: 10

Graphs Binomial

Figure: $f(x)=x+c x^{(p+1) / 2}, p=1009$, Itervalue: 706(top left), $c=606$ satisfies $1-c^{2}=d^{2}$ where $d \in F_{p}$, Number of Components: 27

Graphs Trinomals

Figure: $f(x)=x^{7}+606 x^{505}, p=1009$, Itervalue: 756(top left), Number of Components: 936

Graphs Trinomials

Figure: $f(x)=x^{7}+144 x^{151}, p=1009$, Itervalue: 82(top left), $\operatorname{gcd}(7,1008)>2$ and $\operatorname{gcd}(144,1008)>2$, Number of Components: 435

Cycle Close Up

Figure: Closeup of Section of a Cycle in a Functional Graph

Exponential Decay

Figure: Fraction of $c, d, x\left(\mathrm{Y}\right.$ Axis) for $f(x)=x+c x^{d} \bmod p$ on F_{p} with $p=257$ with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Left), and only Cycle Satisfying Certain Length(X Axis)(Right)

Exponential Decay

Figure: Fraction of $a, c, b, x\left(\mathrm{Y}\right.$ Axis) for $f(x)=x^{a}+c x^{b} \bmod p$ on F_{p} with $p=71$ with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Left), and only Cycle Satisfying Certain Length(X Axis)(Right)

Side Results

[Theorem] If f is a friendly function for a $\Gamma \Upsilon-\mathrm{PRG}, f^{-1}$ cannot be a friendly function for a $\Gamma \Upsilon$-PRG.
[Conjecture] For a suitable friendly function f to form a PRG, it suffices to have a large complexity difference between f and f^{-1}, where f is on $O(\Upsilon)$ and f^{-1} is on $O(\Gamma)$.

Recap

- We want pseudo-random generator.

Recap

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP),
- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP),
under the assumption that solving Trinomials is hard.
- There are a couple interesting avenues we wish we had time to look into here

Recap

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP),
under the assumption that solving Trinomials is hard.
- There are a couple interesting avenues we wish we had time to look into here
- This requires systematically finding a, b, c, D_{p} (restriction of \mathbb{F}_{p}^{*} on which f_{p} is a permutation).
- However...

Recap

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP),
under the assumption that solving Trinomials is hard.
- There are a couple interesting avenues we wish we had time to look into here
- This requires systematically finding a, b, c, D_{p} (restriction of \mathbb{F}_{p}^{*} on which f_{p} is a permutation).
- However... such choices of a, b, c, D_{p} are exceedingly rare.
fin

Summer 2022 REU
PRG's
$42 / 42$

