Pseudo-Random Generators

Casmali Lopez and Paisios Woodcock

Simulating Randomness with Binomials

July 17, 2022

• We a random number.

- We a random number.
- That's hard.

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers:

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this:

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this: Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this: Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.
- I.e. given binary 'string' length n (seed), PRG's create length Q(n)>n (expanded) pseudo-random binary sequences

- We a random number.
- That's hard. Instead, we use Pseudo-random numbers: deterministically generated (thus doable with code) and hard to predict (thus secure).
- A Pseudo-Randon Generator does this: Given n-bit input (seed), a PRG outputs a Q(n)-bit binary number.
- I.e. given binary 'string' length n (seed), PRG's create length Q(n)>n (expanded) pseudo-random binary sequences

• A PRG $G(x_0)$, on input seed x_0 , outputs $(y_1, \cdots, y_{Q(n)})$ such that:

A PRG G(x₀), on input seed x₀, outputs (y₁, ..., y_{Q(n)}) such that: Given x₀, we can easily compute (y₁, ..., y_{Q(n)}), but it takes an adversary a long time to compute y_{i+1} given y₁, ..., y_i, but not x₀.

- A PRG G(x₀), on input seed x₀, outputs (y₁, ..., y_{Q(n)}) such that: Given x₀, we can easily compute (y₁, ..., y_{Q(n)}), but it takes an adversary a long time to compute y_{i+1} given y₁, ..., y_i, but not x₀.
- I.e. To predict with accuracy better than a half takes a long time.

- A PRG G(x₀), on input seed x₀, outputs (y₁, ..., y_{Q(n)}) such that: Given x₀, we can easily compute (y₁, ..., y_{Q(n)}), but it takes an adversary a long time to compute y_{i+1} given y₁, ..., y_i, but not x₀.
- I.e. To predict with accuracy better than a half takes a long time.
- Put one last way:

- A PRG G(x₀), on input seed x₀, outputs (y₁, ..., y_{Q(n)}) such that: Given x₀, we can easily compute (y₁, ..., y_{Q(n)}), but it takes an adversary a long time to compute y_{i+1} given y₁, ..., y_i, but not x₀.
- I.e. To predict with accuracy better than a half takes a long time.
- Put one last way: No algorithm running within a certain time limit can predict a next bit for a fraction much better than ¹/₂ of all inputs (i.e. better than guessing).

• A function $f(n) \in n^{\omega(1)}$ iff f(n) is asymptotically bigger than any polynomial in n.

- A function $f(n) \in n^{\omega(1)}$ iff f(n) is asymptotically bigger than any polynomial in n.
 - I.e. For any polynomial p(n),
 - $\exists n_0 \text{ such that } n > n_0 \implies f(n) > p(n).$

- A function f(n) ∈ n^{ω(1)} iff f(n) is asymptotically bigger than any polynomial in n.
 I.e. For any polynomial p(n),
 ∃ n₀ such that n > n₀ ⇒ f(n) > p(n).
- A $\Gamma \Upsilon$ -PRG is a family of functions $G = \{G_n\}$,

A function f(n) ∈ n^{ω(1)} iff f(n) is asymptotically bigger than any polynomial in n.
 I.e. For any polynomial p(n),

 $\exists \ n_0 \text{ such that } n > n_0 \implies f(n) > p(n).$

• A $\Gamma\Upsilon$ -PRG is a family of functions $G = \{G_n\}$, where $G_n : \{0,1\}^n \to \{0,1\}^{Q(n)}$ and Q(n) > n, • A function $f(n) \in n^{\omega(1)}$ iff f(n) is asymptotically bigger than any polynomial in n.

I.e. For any polynomial p(n), $\exists n_0$ such that $n > n_0 \implies f(n) > p(n)$.

• A $\Gamma \Upsilon$ -PRG is a family of functions $G = \{G_n\}$, where $G_n : \{0,1\}^n \to \{0,1\}^{Q(n)}$ and Q(n) > n, s.t. for any algorithm $A \in \Gamma$ and any $i \in \{1, \cdots, Q(n) - 1\}$, $|Prob_{x_0 \in \{0,1\}^n}(A[y_1, \cdots, y_i] = y_{i+1}) - \frac{1}{2}| \in \frac{1}{n^{\omega(1)}}$, • A function $f(n) \in n^{\omega(1)}$ iff f(n) is asymptotically bigger than any polynomial in n.

I.e. For any polynomial p(n), $\exists n_0$ such that $n > n_0 \implies f(n) > p(n)$.

• A $\Gamma \Upsilon$ -PRG is a family of functions $G = \{G_n\}$, where $G_n : \{0,1\}^n \to \{0,1\}^{Q(n)}$ and Q(n) > n, s.t. for any algorithm $A \in \Gamma$ and any $i \in \{1, \cdots, Q(n) - 1\}$, $|Prob_{x_0 \in \{0,1\}^n}(A[y_1, \cdots, y_i] = y_{i+1}) - \frac{1}{2}| \in \frac{1}{n^{\omega(1)}}$, and G computes in time on $O(\Upsilon)$ (in n).

Significance

• Applications include Procedural Simulations of Nature

- Real Applications typically use (mathematically speaking) pretty horrible PRG's.
- Hackers can know your method of generating... just not the seed. Keeping the seed hidden is what matters most. Humans choose the seed.
- Symmetric Key Cryptography Applications (seed is key)

• Friendly Function f (just a function) and Predicate Function B.

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique:

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x,

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \dots, f^{(Q(n))}(x)$.

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \cdots, f^{(Q(n))}(x)$. Take $B(f(x)), B(f(f(x))), \cdots, B(f^{(Q(n))})$

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take $f(x), f(f(x)), \dots, f^{(Q(n))}(x)$. Take $B(f(x)), B(f(f(x))), \dots, B(f^{(Q(n))})$, and REVERSE order!

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take f(x), f(f(x)), ..., f^{(Q(n))}(x). Take B(f(x)), B(f(f(x))), ..., B(f^{(Q(n))}), and REVERSE order!
- $G_n(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$ for n-bit seed x

- Friendly Function f (just a function) and Predicate Function B.
- Predicate: Maps numbers to a single bit,
- PRG Technique: For length n seed (n-bit binary number) x, Take f(x), f(f(x)), ..., f^{(Q(n))}(x). Take B(f(x)), B(f(f(x))), ..., B(f^{(Q(n))}), and REVERSE order!
- $G_n(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$ for n-bit seed x
- Treats binary expansion of x as n-bit sequence

• Blum and Micali use $f(x) = g^x$, where g is a generator for \mathbb{F}_p^* .

• Blum and Micali use $f(x) = g^x$, where g is a generator for \mathbb{F}_p^* . Choice of seed includes x and g.

• B(x) = 1 iff the smallest s satisfying $x = g^s$ has $s \ge \frac{p-1}{2}$.

• Blum and Micali use $f(x) = g^x$, where g is a generator for \mathbb{F}_p^* . Choice of seed includes x and g.

• B(x) = 1 iff the smallest s satisfying $x = g^s$ has $s \ge \frac{p-1}{2}$. Else 0.

- Blum and Micali use $f(x) = g^x$, where g is a generator for \mathbb{F}_p^* . Choice of seed includes x and g.
- B(x) = 1 iff the smallest s satisfying $x = g^s$ has $s \ge \frac{p-1}{2}$. Else 0.
- Equivalently, $B_{p,g}(y) = 1$ iff y is the principal square root of $y^2 \pmod{p}$.

- Blum and Micali use $f(x) = g^x$, where g is a generator for \mathbb{F}_p^* . Choice of seed includes x and g.
- B(x) = 1 iff the smallest s satisfying $x = g^s$ has $s \ge \frac{p-1}{2}$. Else 0.
- Equivalently, $B_{p,g}(y) = 1$ iff y is the principal square root of $y^2 \pmod{p}$.
- So $G(x) = (B(g^{g^{\dots g^x}}), \dots, B(g^{g^{g^x}}), B(g^{g^x}), B(g^x)).$

Predicate

• For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0.

• For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability $> \frac{1}{2}$.

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability $> \frac{1}{2}$.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability > ¹/₂.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x)) = B(g^x)$ easy: simply ask whether $x \ge \frac{p-1}{2}$.

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability > ¹/₂.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x)) = B(g^x)$ easy: simply ask whether $x \ge \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability > ¹/₂.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x)) = B(g^x)$ easy: simply ask whether $x \ge \frac{p-1}{2}$.
- Roughly, a PRG has two requirements: 1) $x \to B(f(x))$ (computing B(f(x)) from x) is easy

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability > ¹/₂.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x)) = B(g^x)$ easy: simply ask whether $x \ge \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:
 1) x → B(f(x)) (computing B(f(x)) from x) is easy
 2) x → B(x) cannot be easily computed (Why?)

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability > ¹/₂.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x)) = B(g^x)$ easy: simply ask whether $x \ge \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:
 1) x → B(f(x)) (computing B(f(x)) from x) is easy
 2) x → B(x) cannot be easily computed (Why?)
- Just given a $y\in \mathbb{F}_p^*,$ deciding whether y is the principal square root of y^2 is very hard.

- For unpredictability, want half of domain to have B(x) = 1, and other half B(x) = 0. Otherwise, easy to predict with probability > ¹/₂.
- Want $x \to B(f(x))$ easy to compute so we can generate the sequence.
- Indeed, $B(f(x)) = B(g^x)$ easy: simply ask whether $x \ge \frac{p-1}{2}$.
- Roughly, a PRG has two requirements:
 1) x → B(f(x)) (computing B(f(x)) from x) is easy
 2) x → B(x) cannot be easily computed (Why?)
- Just given a $y\in \mathbb{F}_p^*,$ deciding whether y is the principal square root of y^2 is very hard.

• Efficiently predicting the next bit of our sequence

• Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \cdots, B(f(x))$

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \cdots, B(f(x))$
- Suppose we can predict $(i+1)^{st}$ bits from the first i bits.

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \dots, B(f(x))$
- Suppose we can predict $(i + 1)^{st}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B(f^{(i)}(x))$, since $x \to B(f(x))$ easy,

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \dots, B(f(x))$
- Suppose we can predict $(i + 1)^{st}$ bits from the first *i* bits. Then, given *x*, we can efficiently find $B(f(x)), \dots, B(f^{(i)}(x))$, since $x \to B(f(x))$ easy,

and then we can predict B(x) (by bullet one);

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \dots, B(f(x))$
- Suppose we can predict $(i + 1)^{st}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \dots, B(f^{(i)}(x))$, since $x \to B(f(x))$ easy, and then we can predict B(x) (by bullet one); Hence $x \to B(x)$ is efficiently computable!

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \cdots, B(f(x))$
- Suppose we can predict $(i + 1)^{st}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \cdots, B(f^{(i)}(x))$, since $x \to B(f(x))$ easy, and then we can predict B(x) (by bullet one); Hence $x \to B(x)$ is efficiently computable!
- That is:

Next bit predictable $\implies x \rightarrow B(x)$ easy.

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \cdots, B(f(x))$
- Suppose we can predict $(i + 1)^{st}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \dots, B(f^{(i)}(x))$, since $x \to B(f(x))$ easy, and then we can predict B(x) (by bullet one); Hence $x \to B(x)$ is efficiently computable!
- That is: Next bit predictable $\implies x \to B(x)$ easy.

So, by contrapositive:

- Efficiently predicting the next bit of our sequence is equivalent to finding B(x) from $B(f^{(i)}(x)), \cdots, B(f(x))$
- Suppose we can predict $(i + 1)^{st}$ bits from the first i bits. Then, given x, we can efficiently find $B(f(x)), \dots, B(f^{(i)}(x))$, since $x \to B(f(x))$ easy, and then we can predict B(x) (by bullet one); Hence $x \to B(x)$ is efficiently computable!
- That is: Next bit predictable $\implies x \to B(x)$ easy.

So, by contrapositive: $x \rightarrow B(x)$ hard \implies Our PRG Sequence is Unpredictable!

• By "easy" or "hard", we mean:

• By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_0 \in \mathbb{N}$ s.t.

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_0 \in \mathbb{N}$ s.t.

 $n > n_0 \implies f(n) \le cg(n)$

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_0 \in \mathbb{N}$ s.t.

$$n > n_0 \implies f(n) \le cg(n)$$

I.e. $f \in O(g)$ if f is eventually bounded above by some multiple of g.

- By "easy" or "hard", we mean: Is it computable in time on the Order of a certain function?
- $f(n) \in O(g(n))$ iff $\exists c \in \mathbb{R}, n_0 \in \mathbb{N}$ s.t.

$$n > n_0 \implies f(n) \le cg(n)$$

I.e. $f \in O(g)$ if f is eventually bounded above by some multiple of g.

• Note: Γ is the set of algorithms computable on $O(F_i)$ for some function F_i in a family of functions F.

Binomials

• Let
$$f(x) = x^a + cx^b$$

- Let $f(x) = x^a + c x^b {\in} {\mathbb F}_p^*[x]$,
- Can we use this as a friendly function?

- Let $f(x) = x^a + c x^b {\in} {\mathbb F}_p^*[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:

- Let $f(x) = x^a + cx^b \in \mathbb{F}_p^*[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:

 $x \to B(x^a + c x^b)$ is easy, but

- Let $f(x) = x^a + cx^b \in \mathbb{F}_p^*[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:

$$x \to B(x^a + cx^b)$$
 is easy, but $x \to B(x)$ is hard?

• If we can find a predicate meeting certain conditions (to be seen),

- Let $f(x) = x^a + cx^b \in \mathbb{F}_p^*[x]$,
- Can we use this as a friendly function?
- That is: does there exist predicate B such that:

$$x \to B(x^a + cx^b)$$
 is easy, but $x \to B(x)$ is hard?

• If we can find a predicate meeting certain conditions (to be seen), then yes: this *f* can make a PRG.

• Now suppose we're given $y \in \mathbb{F}_p^*$.

• Now suppose we're given $y \in \mathbb{F}_p^*$. How hard is it to find x s.t. $x^a + cx^b = y \pmod{p}$? \mathbb{F}_p^* .

- Now suppose we're given y ∈ 𝔽_p^{*}.
 How hard is it to find x s.t. x^a + cx^b = y (mod p)? 𝔼_p^{*}.
- Or: How long does it take to solve $x^a + cx^b y$ over \mathbb{F}_p^* ?

- Now suppose we're given y ∈ 𝔽_p^{*}.
 How hard is it to find x s.t. x^a + cx^b = y (mod p)? 𝔼_p^{*}.
- Or: How long does it take to solve $x^a + cx^b y$ over \mathbb{F}_p^* ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.

- Now suppose we're given y ∈ 𝔽_p^{*}.
 How hard is it to find x s.t. x^a + cx^b = y (mod p)? 𝔼_p^{*}.
- Or: How long does it take to solve $x^a + cx^b y$ over \mathbb{F}_p^* ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f = x^a + cx^b$, find B such that:

- Now suppose we're given y ∈ 𝔽_p^{*}.
 How hard is it to find x s.t. x^a + cx^b = y (mod p)? 𝔼_p^{*}.
- Or: How long does it take to solve $x^a + cx^b y$ over \mathbb{F}_p^* ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f = x^a + cx^b$, find B such that:

If $x \to B(x)$ easy, then finding x from f(x) is easy.

- Now suppose we're given y ∈ 𝔽^{*}_p.
 How hard is it to find x s.t. x^a + cx^b = y (mod p)? 𝔼^{*}_p.
- Or: How long does it take to solve $x^a + cx^b y$ over \mathbb{F}_p^* ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f = x^a + cx^b$, find B such that:

If $x \to B(x)$ easy, then finding x from f(x) is easy. Hence if solving Trinomials is Hard, (by contrapositive) the PRG condition " $x \to B(x)$ is hard" is satisfied.

Trinomial Hardness

- Now suppose we're given y ∈ 𝔽_p^{*}.
 How hard is it to find x s.t. x^a + cx^b = y (mod p)? 𝔼_p^{*}.
- Or: How long does it take to solve $x^a + cx^b y$ over \mathbb{F}_p^* ?
- Goal: We want to use Hardness of Solving Trinomials to make this binomial a friendly function for a PRG.
- Method: For $f = x^a + cx^b$, find B such that:

If $x \to B(x)$ easy, then finding x from f(x) is easy. Hence if solving Trinomials is Hard, (by contrapositive) the PRG condition " $x \to B(x)$ is hard" is satisfied.

Conditional Result.

• By easy, we mean doable for a certain fraction better than half of all inputs.

- By easy, we mean doable for a certain fraction better than half of all inputs.
- $\bullet\,$ We want a predicate B such that

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \to B(y)$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \to B(y)$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs (where P is some polynomial),

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \to B(y)$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs (where P is some polynomial), would allow us to efficiently predict the root of $x^a + cx^b - y$

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \to B(y)$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs (where P is some polynomial), would allow us to efficiently predict the root of $x^a + cx^b - y$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs.

- By easy, we mean doable for a certain fraction better than half of all inputs.
- We want a predicate B such that knowing $y \to B(y)$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs (where P is some polynomial), would allow us to efficiently predict the root of $x^a + cx^b - y$ for a fraction $> \frac{1}{2} + \frac{1}{P(n)}$ of y inputs. (Where p is n-bit)

- \bullet What is the fastest known algorithm for solving this trinomial for a root over \mathbb{F}_p^*
- \sqrt{p} -time. That is, $2^{\frac{n}{2}}$ -time.

- $D_p \subseteq \mathbb{F}_p^*$ is the set of inputs to our friendly function f_p and predicate B_p (dependent on the prime p).
- Size-*n* inputs to Predicate and Friendly Function:

- $D_p \subseteq \mathbb{F}_p^*$ is the set of inputs to our friendly function f_p and predicate B_p (dependent on the prime p).
- Size-*n* inputs to Predicate and Friendly Function: $I_n = \{(p, x) | p \text{ is } n \text{-bit prime } x \in D_p\}$

- $D_p \subseteq \mathbb{F}_p^*$ is the set of inputs to our friendly function f_p and predicate B_p (dependent on the prime p).
- Size-*n* inputs to Predicate and Friendly Function: $I_n = \{(p, x) | p \text{ is } n \text{-bit prime } x \in D_p\}$
- Friendly function and predicate are sets of functions, dependent on input length *n*.

• General Approach: If $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x))),$

• General Approach: If $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$, We need B(x) to be unpredictable when given x.

- General Approach: If $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$, We need B(x) to be unpredictable when given x.
- If f is sufficiently 'random' under iteration, why not just use $G(x) = (f(x), \cdots, f^{(Q(n))}(x))$?

- General Approach: If $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$, We need B(x) to be unpredictable when given x.
- If f is sufficiently 'random' under iteration, why not just use $G(x) = (f(x), \cdots, f^{(Q(n))}(x))$?
- Need binary output, so have to choose a digit from each.
- And! Hacker can see our function f! PRG's need to be that strong.

- General Approach: If $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$, We need B(x) to be unpredictable when given x.
- If f is sufficiently 'random' under iteration, why not just use $G(x) = (f(x), \cdots, f^{(Q(n))}(x))$?
- Need binary output, so have to choose a digit from each.
- And! Hacker can see our function f! PRG's need to be that strong.
- Importance of seed in Symmetric Key Cryptography applications. How it's generated. Knowing seed is everything!

Def A predicate B is v-accessible if there is a probabilistic algorithm with expected run time v(n) such that, on input an n-bit integer, the algorithm outputs some $(p, x) \in I_n$ with uniform probability among elements of I_n ;

- **Def** A predicate *B* is *v*-accessible if there is a probabilistic algorithm with expected run time v(n) such that, on input an *n*-bit integer, the algorithm outputs some $(p, x) \in I_n$ with uniform probability among elements of I_n ; or, when it doesn't, it outputs nothing, but only with probability $\frac{1}{2^c}$ for some constant *c*.
 - So: A predicate is *v*-Accessible if its *n*-bit inputs can be randomly, uniformly sampled from *n*-bit integers in time v(n); but it allows possibility that there is a small chance your sampling algorithm doesn't work.

- **Def** A predicate *B* is *v*-accessible if there is a probabilistic algorithm with expected run time v(n) such that, on input an *n*-bit integer, the algorithm outputs some $(p, x) \in I_n$ with uniform probability among elements of I_n ; or, when it doesn't, it outputs nothing, but only with probability $\frac{1}{2^c}$ for some constant *c*.
 - So: A predicate is *v*-Accessible if its *n*-bit inputs can be randomly, uniformly sampled from *n*-bit integers in time v(n); but it allows possibility that there is a small chance your sampling algorithm doesn't work.
 - Typically defined other way:
 - v is however long it takes to sample inputs uniformly.

• Why accessability?

 Why accessability? Our PRG takes any n-bit input, but since f_p (our friendly function) has to be a permutation on the input (in order to make a PRG), we must restrict the input to some D_p.

- Why accessability? Our PRG takes any n-bit input, but since f_p (our friendly function) has to be a permutation on the input (in order to make a PRG), we must restrict the input to some D_p.
- So, given random *n*-bit integer, we need to quickly get a 'random' *n*-bit input to our friendly function in order to calculate the PRG.

Def A predicate B is Γ -unapproximable if no algorithm in Γ can correctly compute B(x) from x for more than a fraction $\frac{1}{2} + \frac{1}{P(n)}$ of all n-bit inputs (p, x), for any polynomial P.

- **Def** A predicate B is Γ -unapproximable if no algorithm in Γ can correctly compute B(x) from x for more than a fraction $\frac{1}{2} + \frac{1}{P(n)}$ of all n-bit inputs (p, x), for any polynomial P.
 - Basically, output of predicate is "unpredictable" (accuracy better than guessing requires enormous computation)

Generalized Sufficient Conditions

Generalized Sufficient Conditions

[Theorem] Sufficient conditions to form a PRG are:

• $f_p \equiv f(p, \cdot) : D_p \to D_p$ be a permutation for all *n*-bit primes

- $f_p \equiv f(p, \cdot): D_p \to D_p$ be a permutation for all n-bit primes
- $f:(p,x) \to D_p$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")

- $f_p \equiv f(p, \cdot): D_p \to D_p$ be a permutation for all n-bit primes
- $f:(p,x) \to D_p$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p,x)\in I \to B_p(f_p(x))$ also in Υ (" $x \to B_p(f(x))$ easy")

- $f_p \equiv f(p, \cdot): D_p \to D_p$ be a permutation for all n-bit primes
- $f:(p,x) \to D_p$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p,x)\in I \to B_p(f_p(x))$ also in Υ (" $x \to B_p(f(x))$ easy")
- *B* is *v*-accessible, where $v \in O(\Upsilon)$

- $f_p \equiv f(p, \cdot) : D_p \to D_p$ be a permutation for all n-bit primes
- $f:(p,x) \to D_p$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p,x)\in I \to B_p(f_p(x))$ also in Υ (" $x\to B_p(f(x))$ easy")
- B is v-accessible, where $v \in O(\Upsilon)$
- B is Γ -unapproximable. (" $x \to B_p(x)$ hard")

- $f_p \equiv f(p, \cdot) : D_p \to D_p$ be a permutation for all n-bit primes
- $f: (p, x) \to D_p$ calculates in time on the order of some function from a family of functions Υ ("efficiently computable")
- $h:(p,x)\in I\to B_p(f_p(x))$ also in Υ ($``x\to B_p(f(x))$ easy")
- B is v-accessible, where $v \in O(\Upsilon)$
- B is Γ -unapproximable. (" $x \to B_p(x)$ hard")
- $\Gamma \supseteq \Upsilon$ (otherwise it may be more easily broken than computed.)

• f_p depends on p, so to efficiently compute, need to find f_p quick and calculate $B(f_p(x))$ quick.

- f_p depends on p, so to efficiently compute, need to find f_p quick and calculate $B(f_p(x))$ quick.
- Need f_p to be a permutation on D_p .

- f_p depends on p, so to efficiently compute, need to find f_p quick and calculate $B(f_p(x))$ quick.
- Need f_p to be a permutation on D_p .
- Need D_p (input to f_p) efficiently randomly sample-able

- f_p depends on p, so to efficiently compute, need to find f_p quick and calculate $B(f_p(x))$ quick.
- Need f_p to be a permutation on D_p .
- Need D_p (input to f_p) efficiently randomly sample-able
- The time it takes to compute $f_p(x)$ and $B_p(f_p(x))$ are both on the order of the time it takes to 'access' D_p .

- $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$ for n-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

- $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$ for n-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Brief Proof Outline:

- $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$ for *n*-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Brief Proof Outline:

• Generating G(x) requires Q(n) calculations of $B_p(f_p(x))$ and $f(p, \cdot)$, i.e. calculating f and $h_p \in \Upsilon$. Thus generating G(x) takes time in Υ .

- $G(x) = (B(f^{(Q(n))}(x)), \cdots, B(f(x)))$ for *n*-bit seed x
- Need to prove G can be generated in time on $O(\Upsilon)$ and resists next-bit prediction by algorithms on $O(\Gamma)$.

Brief Proof Outline:

- Generating G(x) requires Q(n) calculations of $B_p(f_p(x))$ and $f(p, \cdot)$, i.e. calculating f and $h_p \in \Upsilon$. Thus generating G(x) takes time in Υ .
- If there exists next-bit prediction algorithm in Γ, then use this algorithm to predict B(f⁽ⁱ⁺¹⁾(x)) from B(f⁽ⁱ⁾(x)): i.e. predict B(x) from x. This contradicts unapproximability (unpredictable output)!

• What are we doing?

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- $\bullet~\Gamma$ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.

 $\Upsilon,$ the time it takes to generate the PRG, sets bounds on this $\Gamma,$

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence.
 Υ, the time it takes to generate the PRG, sets bounds on this Γ, because Υ ⊆ Γ.
 The a, b, c, D_p (with f_p(x) = x^a + cx^b being permutation on D_p) determine Υ

- What are we doing?
- Reminder: we want to generate unpredictable binary strings.
- This means algorithms running in certain times can't predict with certain accuracy.
- Γ is our measure of "certain times", i.e. the strength of algorithms that cannot predict our sequence. Υ , the time it takes to generate the PRG, sets bounds on this Γ , because $\Upsilon \subseteq \Gamma$. The a, b, c, D_p (with $f_p(x) = x^a + cx^b$ being permutation on D_p) determine Υ
- Studying what choice of Γ and Υ will work shows how good (if possible) our PRG is.

Neccessary Conditions on PRG's

• Another thing that limits our choice of Γ is what we call $\Delta.$

- Another thing that limits our choice of Γ is what we call Δ .
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^a + cx^b$ in \mathbb{F}_p^* , where p is n-bits.

- Another thing that limits our choice of Γ is what we call $\Delta.$
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^a + cx^b$ in \mathbb{F}_p^* , where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.

- Another thing that limits our choice of Γ is what we call $\Delta.$
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^a + cx^b$ in \mathbb{F}_p^* , where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.
- Recall the definition:

- Another thing that limits our choice of Γ is what we call Δ .
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^a + cx^b$ in \mathbb{F}_p^* , where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.
- Recall the definition:

G is a $\Gamma\Upsilon$ -PRG if no algorithm in Γ can predict with accuracy $\frac{1}{2} + \frac{1}{P(n)}$ for any polynomial P, and G runs in time on $O(\Upsilon)$.

- Another thing that limits our choice of Γ is what we call Δ .
- Let $\delta(n)$ be the fastest time it takes to compute a root of $x^a + cx^b$ in \mathbb{F}_p^* , where p is n-bits.
- Let Δ be all functions on $O(\delta(n))$.
- Recall the definition:

G is a $\Gamma\Upsilon$ -PRG if no algorithm in Γ can predict with accuracy $\frac{1}{2} + \frac{1}{P(n)}$ for any polynomial P, and G runs in time on $O(\Upsilon)$.

• Say $\Delta \subseteq \Gamma$.

• Say $\Delta \subseteq \Gamma$. Then $\delta \in O(\Gamma)$, so we cannot predict B(y) give y (better than guessing). Say Δ ⊆ Γ. Then δ ∈ O(Γ), so we cannot predict B(y) give y (better than guessing). Put given y find m st. f(m) = y then B(f(m)) = B(y)

But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).

• Say $\Delta \subseteq \Gamma$. Then $\delta \in O(\Gamma)$, so we cannot predict B(y) give y (better than guessing). But given y, find x s.t. f(x) = y, then B(f(x)) = B(y).

Doable in time $O(\delta(n)) + O(\Upsilon)$, so on $O(\Upsilon)$.

- Say $\Delta \subseteq \Gamma$. Then $\delta \in O(\Gamma)$, so we cannot predict B(y) give y (better than guessing). But given y, find x s.t. f(x) = y, then B(f(x)) = B(y). Doable in time $O(\delta(n)) + O(\Upsilon)$, so on $O(\Upsilon)$. Contradiction!
- Thus we must have $\Gamma \subsetneq \Delta$.

• Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.

- Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.
- How do we choose the a, b, c, D_p to make $f_p(x) = x^a + cx^b$ a permutation on D_p ?

- Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.
- How do we choose the a, b, c, D_p to make $f_p(x) = x^a + cx^b$ a permutation on D_p ? Is this easy?
- Good questions.

- Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.
- How do we choose the a, b, c, D_p to make $f_p(x) = x^a + cx^b$ a permutation on D_p ? Is this easy?
- Good questions. That's where the bulk of computation time goes.

- Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.
- How do we choose the a, b, c, D_p to make $f_p(x) = x^a + cx^b$ a permutation on D_p ? Is this easy?
- Good questions. That's where the bulk of computation time goes.
- The thing which may keep this binomial from making a PRG is it being "too expensive" to systematically find the a, b, c, D_p such that f_p is a permutation on D_p .

- Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.
- How do we choose the a, b, c, D_p to make $f_p(x) = x^a + cx^b$ a permutation on D_p ? Is this easy?
- Good questions. That's where the bulk of computation time goes.
- The thing which may keep this binomial from making a PRG is it being "too expensive" to systematically find the a, b, c, D_p such that f_p is a permutation on D_p .
- Especially because $|D_p| \ge Q(n)$.

- Current Bounds: Calculating $f_p(x)$ and $h_p(x)$ take time on $O(n^2 \log(n))$.
- How do we choose the a, b, c, D_p to make $f_p(x) = x^a + cx^b$ a permutation on D_p ? Is this easy?
- Good questions. That's where the bulk of computation time goes.
- The thing which may keep this binomial from making a PRG is it being "too expensive" to systematically find the a, b, c, D_p such that f_p is a permutation on D_p .
- Especially because $|D_p| \ge Q(n)$.
- Can't begin being periodic too quickly, so must have bigger range of outputs of f(x) than elements in the outputted sequence.

• We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_p and finding D_p take too long, Γ skyrockets,

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_p and finding D_p take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_p and finding D_p take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.
- As Γ increases, this becomes a stronger and stronger statement.

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_p and finding D_p take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.
- As Γ increases, this becomes a stronger and stronger statement.
- At very least, need f_p and D_p computable in time on smaller order than δ (generate faster than break).

- We need $\Upsilon \subseteq \Gamma \subsetneq \Delta$.
- If calculating f_p and finding D_p take too long, Γ skyrockets, then we would need to show: No algorithm on this huge Γ runtime can predict with good accuracy.
- As Γ increases, this becomes a stronger and stronger statement.
- At very least, need f_p and D_p computable in time on smaller order than δ (generate faster than break).
- A lower bound on Υ is $n^2\log(n)$ (time to calculate each $f_p(x)$ when a,b,c,D_p are known).

• Reminder: We're assessing Γ and Υ to see whether binomials can generate PRG's. And D_p determines Υ , which determines whether there is a Γ to work.

- Suppose finding a root of $f(x) = x^a + c x^b$ is doable in time on $O(n^2 log(n))$
 - ; that is, trinomials are solvable in time on $O(\log^2(p)\log(\log(p)))$.

- Suppose finding a root of $f(x) = x^a + cx^b$ is doable in time on $O(n^2 log(n))$; that is, trinomials are solvable in time on $O(\log^2(p) \log(\log(p)))$.
- Then f cannot be used to create a PRG (for any Γ , Φ , Υ , or B)!

- Suppose finding a root of $f(x)=x^a+cx^b$ is doable in time on $O(n^2log(n))$
 - ; that is, trinomials are solvable in time on $O(\log^2(p)\log(\log(p))).$
- Then f cannot be used to create a PRG (for any Γ , Φ , Υ , or B)!
- In fact, if finding the root of a $d\text{-degree}\ t\text{-nomial}\ f$ over \mathbb{F}_p^* is doable in time on $O(t\log^2(p)\log(\log(p)),$

• Suppose finding a root of $f(x) = x^a + c x^b$ is doable in time on $O(n^2 log(n))$

; that is, trinomials are solvable in time on $O(\log^2(p)\log(\log(p))).$

- Then f cannot be used to create a PRG (for any Γ , Φ , Υ , or B)!
- In fact, if finding the root of a *d*-degree *t*-nomial f over \mathbb{F}_p^* is doable in time on $O(t \log^2(p) \log(\log(p)))$, then f cannot be used as a friendly function (ever).

• D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .

- D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:

Importance of D_p

- D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O(p \log^2(p) \log(\log(p)))$, we need to systematically choose a, b, c, and $D_p \subseteq \mathbb{F}_p^*$ such that $f_p(x) = x^a + cx^b$ is a permutation on D_p .

- D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O(p \log^2(p) \log(\log(p)))$, we need to systematically choose a, b, c, and $D_p \subseteq \mathbb{F}_p^*$ such that $f_p(x) = x^a + cx^b$ is a permutation on D_p .
- What algorithm works?

- D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O(p \log^2(p) \log(\log(p)))$, we need to systematically choose a, b, c, and $D_p \subseteq \mathbb{F}_p^*$ such that $f_p(x) = x^a + cx^b$ is a permutation on D_p .
- What algorithm works? We don't know any.

- D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O(p \log^2(p) \log(\log(p)))$, we need to systematically choose a, b, c, and $D_p \subseteq \mathbb{F}_p^*$ such that $f_p(x) = x^a + cx^b$ is a permutation on D_p .
- What algorithm works? We don't know any.But statistically speaking, "good" choices are hard to come by.

- D_p is the restriction of \mathbb{F}_p^* such that $x^a + cx^b$ is a permutation on D_p .
- To decide whether this binomial can be used for PRG's, one prerequisite is thus:
- In time on $O(p \log^2(p) \log(\log(p)))$, we need to systematically choose a, b, c, and $D_p \subseteq \mathbb{F}_p^*$ such that $f_p(x) = x^a + cx^b$ is a permutation on D_p .
- What algorithm works? We don't know any.But statistically speaking, "good" choices are hard to come by.
- D_p will be a subset of \mathbb{F}_p^* that forms a cycle under f_p , so this boils down to studying cycle lengths and frequencies of $x^a + cx^b \in \mathbb{F}_p^*[x]$.

• By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds

 By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_p, we need to actually iterate through f_p until reaching a repeat.

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_p, we need to actually iterate through f_p until reaching a repeat.
- Need cycle length at least Q(n),

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_p, we need to actually iterate through f_p until reaching a repeat.
- \bullet Need cycle length at least Q(n), but Cycle Length + Pre-Period Length less than O(p)

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_p, we need to actually iterate through f_p until reaching a repeat.
- Need cycle length at least Q(n), but Cycle Length + Pre-Period Length less than O(p), lest calculating D_p takes time on $O(\Delta)$ and the whole PRG is useless.

- By technical definitions, we only need a PRG to be unpredictable for "almost all" input seeds, and to choose D_p, we need to actually iterate through f_p until reaching a repeat.
- Need cycle length at least Q(n), but Cycle Length + Pre-Period Length less than O(p), lest calculating D_p takes time on $O(\Delta)$ and the whole PRG is useless.
- Study pre-period and closest-cycle lengths for elements on \mathbb{F}_p^*

- So.... What do know about these cycles in F_p ?
- $\bullet\,$ The following slides represent some experimental results for various f(x)
- f(x) over the Field
- Example of iterating f(x)
- Discrete Fourier Analysis(discrepancy) of iteration
- Functional Graph of f(x)

Graphs DLP

Figure: $f(x) = 11^x \mod 1009$, p = 1009, Itervalue: 582(top left), Number of Components: 10

Graphs Binomial

Figure: $f(x) = x + cx^{(p+1)/2}$, p = 1009, Itervalue: 706(top left), c = 606 satisfies $1 - c^2 = d^2$ where $d \in F_p$, Number of Components: 27

Graphs Trinomals

Figure: $f(x) = x^7 + 606x^{505}$, p = 1009, Itervalue: 756(top left), Number of Components: 936

Graphs Trinomials

Figure: $f(x) = x^7 + 144x^{151}$, p = 1009, Itervalue: 82(top left), gcd(7, 1008) > 2 and gcd(144, 1008) > 2, Number of Components: 435

Cycle Close Up

Figure: Closeup of Section of a Cycle in a Functional Graph

Exponential Decay

Figure: Fraction of c, d, x(Y Axis) for $f(x) = x + cx^d \mod p$ on F_p with p = 257 with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Left), and only Cycle Satisfying Certain Length(X Axis)(Right)

Exponential Decay

Figure: Fraction of a, c, b, x(Y Axis) for $f(x) = x^a + cx^b \mod p$ on F_p with p = 71 with Pre-Cycle plus Cycle Satisfying Certain Length (X Axis)(Left), and only Cycle Satisfying Certain Length(X Axis)(Right)

[Theorem] If f is a friendly function for a $\Gamma\Upsilon$ -PRG, f^{-1} cannot be a friendly function for a $\Gamma\Upsilon$ -PRG.

[Conjecture] For a suitable friendly function f to form a PRG, it suffices to have a large complexity difference between f and f^{-1} , where f is on $O(\Upsilon)$ and f^{-1} is on $O(\Gamma)$.

• We want pseudo-random generator.

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP),

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP), under the assumption that solving Trinomials is hard.
- There are a couple interesting avenues we wish we had time to look into here

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP), under the assumption that solving Trinomials is hard.
- There are a couple interesting avenues we wish we had time to look into here
- This requires systematically finding a, b, c, D_p (restriction of \mathbb{F}_p^* on which f_p is a permutation).
- However...

- We want pseudo-random generator.
- We generate it the way Blum and Micali do.
- We want to use Binomials (instead of DLP), under the assumption that solving Trinomials is hard.
- There are a couple interesting avenues we wish we had time to look into here
- This requires systematically finding a, b, c, D_p (restriction of \mathbb{F}_p^* on which f_p is a permutation).
- However... such choices of a, b, c, D_p are exceedingly rare.

