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Abstract. For the classical Dedekind sum, Dedekind’s reciprocity relation and Rademacher’s three term
relation are well-known. For newform Dedekind sums, Stucker, Vennos, and Young proved a “two term”

reciprocity relation. In this paper, we prove a three term reciprocity relation analogous to Rademacher’s
formula. We also prove a three term relation involving six variables which is analogous to a result of

Pommersheim.

1. Introduction

1.1. Classical Dedekind Sums. The classical Dedekind sum, is defined for integers a, c as

s(a, c) =
∑

n mod c

B1

(n
c

)
B1

(an
c

)
where

B1(x) =

{
x− ⌊x⌋ − 1

2 if x ∈ R and x /∈ Z,
0 if x ∈ Z.

There exists a “two term” reciprocity relation such that for relatively prime integers a and c,

(1) s(a, c) + s(c, a) =
1

12

(
a

c
+

1

ac
+
c

a

)
− 1

4
.

The reciprocity formula is a fundamental relation in number theory. It has been used to systematically
count integer points in polytopes and to efficiently compute the Dedekind sum. Rademacher deduced the
following “three term” reciprocity relation between Dedekind sums.

Theorem 1.1 (Rademacher). For mutually coprime natural numbers p, q and r,

s(pq, r) + s(qr, p) + s(rp, q) =
1

12

(
p

qr
+

q

pr
+

r

pq

)
− 1

4
.

where q and r, p are the inverses of r (mod p) and p (mod q), respectively.

Rademacher’s result easily implies (1). Rademacher did not deduce this “three term” relation from the two
term and believed that the three term “seemed to go beyond” its properties [Rad54, 391]. This relation is a
useful tool in [Gir21] for studying the equality of two Dedekind sums. Additionally it is used to help
determine the mean value of Dedekind sums in [CFKS96]. Several authors have also given generalizations
of Dedekind sums and in turn proved associated reciprocity relationships. The authors in [HWZ95]
considered a generalization in terms of higher order Bernoulli functions and proved a three term
relationship for a related function utilizing Theorem 1.1.

Pommersheim also proved a relationship between three Dedekind sums in six variables. He obtained this
result for Dedekind sums while studying the relationships between lattice points, the Todd class of toric
varieties, and how Dedekind sums can be used in related computations [Pom93].

Theorem 1.2 (Pommersheim). Let p, q, u, v be natural numbers with (p, q) = (u, v) = 1 and u∗, v∗ be
integers such that uu∗ + vv∗ = 1. Define x and y by x = qv∗ − pu∗ and y = pv + qu. Then

s(p, q) + s(u, v) + s(x, y) =
1

12

(
q

vy
+

v

qy
+

y

qv

)
− 1

4
.

Pommersheim classified this relationship as a generalization of Theorem 1.1.
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1.2. Newform Dedekind Sums. In this section we give the definition of the newform Dedekind sum
obtained in [SVY20] as well as some of the properties proved within the paper.

Definition 1.3. The group Γ0(N), N ∈ Z, is defined as

Γ0(N) =
{[a b
c d

]
|a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod N)

}
Definition 1.4 (Newform Dedekind Sums). Let χ1 (mod q1) and χ2 (mod q2) be primitive Dirichlet
characters with q1, q2 > 1 and χ1χ2(−1) = 1. Let c ≥ 1 and

γ =

[
a b
c d

]
∈ Γ0(q1q2).

Then

Sχ1χ2
(γ) =

∑
j (mod c)

∑
n (mod q1)

χ2(j)χ1(n)B1

(
j

c

)
B1

(
n

q1
+
aj

c

)
.

Additionally, they found the following two term reciprocity relation in the newform case.

Theorem 1.5 ([SVY20]). Let γ =

[
a b

cq1q2 d

]
∈ Γ0(q1q2) and γ

′ =

[
d −c

−bq1q2 a

]
∈ Γ0(q1q2). Then for

χ1, χ2 even,

Sχ1,χ2
(γ) = Sχ2,χ1

(γ′).

Remark. A reciprocity formula for χ1, χ2 odd also appears in [SVY20].

Remark. For γ =

[
a b
c d

]
, we write Sχ1,χ2

(γ) = Sχ1,χ2
(a, c) which mimics the notation in the classical

case.

The definition of the newform Dedekind sum can be extended to c = 0 and c < 0 via
Sχ1χ2(−a,−c) = Sχ1χ2(a, c) and Sχ1χ2(1, 0) = 0.

The first result in our paper is an analogue of Theorem 1.2 in the newform case.

Theorem 1.6. Let p, q, u, v be natural numbers with (p, q) = (u, v) = 1, q1q2|v, and q1q2|q, and u∗, v∗ be
integers such that uu∗ + vv∗ = 1. Define x and y by x = qv∗ + pu∗ and y = −pv + qu. Then

Sχ1,χ2
(p, q)− Sχ1,χ2

(u, v)− ψ(u)Sχ1,χ2
(x, y) = 0.

Theorem 1.6 appears slightly different from Theorem 1.2 because of our different definitions of x and y.

The second theorem we prove is an analogue in the newform case for Theorem 1.1.

Theorem 1.7. Suppose Q,V, Y are pairwise coprime integers. Moreover, suppose gcd(QV Y, q1q2) = 1.
Define integers P,U , and X by the following congruences

(2) P ≡

{
Y V (mod Q)

1 (mod q1q2)
, U ≡

{
Y Q (mod V )

1 (mod q1q2)
, X ≡

{
QV (mod Y )

1 (mod q1q2)
.

Then

Sχ1,χ2(P,Qq1q2) + Sχ1,χ2(U, V q1q2) + Sχ1,χ2(X,Y q1, q2) = 0.

1.3. Discussion. In [Gir99], Girstmair showed that Rademacher’s three term relation is a consequence of
Pommersheim’s relation, which is itself a consequence of the famous two term reciprocity relation. That is,
he proved a direct equivalence between the three relations. Within his proof Girstmair used Theorem 1.2 as
an intermediary step between the classical and Rademacher reciprocity relations although Pommersheim’s
result was originally conceived as a generalization of Theorem 1.1. Although in the classical case there is a
direct equivalence between the two term and the three term relations, we did not find any such equivalence
in the newform case between our two results and the two term reciprocity relation in [SVY20].
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2. Properties of Newform Dedekind Sums

The following properties of newform Dedekind sums are used throughout the paper.

Lemma 2.1. For γ1, γ2 ∈ Γ0(q1q2),

Sχ1,χ2
(γ1γ2) = Sχ1,χ2

(γ1) + ψ(γ1)Sχ1,χ2
(γ2).

Proof. See [SVY20, Lemma 2.2]. □

Lemma 2.2. Let γ ∈ Γ0(q1q2) and γ
−1 ∈ Γ0(q1q2) be its multiplicative inverse. Then

Sχ1,χ2
(γ) = −ψ(γ)Sχ1,χ2

(γ−1).

Proof. This follows from Lemma 2.1. □

Lemma 2.3. For a, c ∈ Z, with c ≥ 1 and q1q2|c,

Sχ1,χ2
(−a, c) = −ψ(a)Sχ1,χ2

(a, c).

Proof. Follows from [DG20, Propositions 2.3, 2.4] □

3. Proof of Theorem 1.6

Let p, q, u, v be natural numbers with (p, q) = (u, v) = 1, q1q2|v, and q1q2|q, and u∗, v∗ be integers such that
uu∗ + vv∗ = 1. Define x and y by x = qv∗ + pu∗ and y = −pv + qu. Then

(3) M1 =

[
u∗ v∗

−v u

]
and M1

−1 =

[
u −v∗
v u∗

]
.

(4) M2 =

[
p −q∗
q p∗

]
.

Note that M1, M2 ∈ Γ0(q1q2).

Define the matrix M3 ∈ Γ0(q1q2) such that M1M2M3 = I where I is the identity matrix. By direct
calculation,

(5) M3 = (M1M2)
−1 =

[
vq∗ + p∗u q∗u∗ − v∗p∗

pv − qu pu∗ + qv∗

]
=

[
∗ ∗
−y x

]
and M3

−1 =

[
x ∗
y ∗

]
.

On the one hand,

(6) Sχ1,χ2
(M1M2M3) = Sχ1,χ2

(I) = 0.

By Lemma 2.1,

(7) 0 = Sχ1,χ2
(M1) + ψ(M1)Sχ1,χ2

(M2) + ψ(M1M2)Sχ1,χ2
(M3).

On the other hand, using Lemma 2.2 to invert M1 and M3, we have,

0 = −ψ(M1)Sχ1,χ2
(M1

−1) + ψ(M1)Sχ1,χ2
(M2)− ψ(M1M2)ψ(M3)Sχ1,χ2

(M3
−1)

(8) = −ψ(M1)Sχ1,χ2(M1
−1) + ψ(M1)Sχ1,χ2(M2)− Sχ1,χ2(M3

−1).

Multiplying each term by ψ(M1), we obtain

(9) 0 = −Sχ1,χ2
(M1

−1) + Sχ1,χ2
(M2)− ψ(M1)Sχ1,χ2

(M3
−1).

Using the notation we defined in our introduction, we get Theorem 1.6.
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4. Proof of Theorem 1.7

Let Q,V, Y ∈ Z and q1q2 be mutually coprime. Set q, v, and y as q = q1q2Q, v = q1q2V, y = q1q2Y. Select
integers P,U , and X such that (2) holds.
This implies that

UQ ≡ Y (mod V ).

Following from V, Y |q1q2, let there be some integer L such that

UQ = Y + V L.

Then

Y ≡ −V L (mod Q).

So,

L ≡ −Y V (mod Q).

That is,

L ≡ −P (mod Q).

Let u = U and let u∗, v∗ ∈ Z be such that uu∗ + vv∗ = 1. Set p ∈ Z such that p ≡

{
L (mod Q)

−1 (mod q1q2)
and

let p∗, q∗ ∈ Z be such that pp∗ + qq∗ = 1.
Note that

uQ = Y + V L⇐⇒ uq = y + vL.

Let x, y be as defined in Theorem 1.6. This implies

xv = pu∗v + q(1− uu∗)

= q + u∗(pv − qu)

= q − u∗y.

Thus

xV = Q− u∗Y

and so

x ≡ QV ≡ X (mod Y ).

With u, v, p, q, x, y defined above, let M1M2M3 be given by (3), (4), and (5). Then ψ(u) = 1 .
The proof of Theorem 1.6 gives

Sχ1,χ2
(L, q1q2Q) + Sχ1,χ2

(U, q1q2V ) + Sχ1,χ2
(X, q1, q2Y ) = 0

Using Lemma 2.3 we obtain Theorem 1.7. When q1q2 = 1 this formula reduces down to

S(Y V,Q) + S(QY, V ) + S(V Q, Y ) = 0.
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