Polynomial Systems Supported on Circuits

Zachary Nunez

REU Student - Algorithmic Algebraic Geometry, Texas A&M University

July 18, 2022

Nunez Texas A&M University

Goals

- Understand the behaviour of polynomial circuit system.
- Develop tools to analyze and characterize circuit systems
- Help develop algorithms to quickly solve circuit systems.

Introduction

- Consider the problem of solving (in \mathbb{R}) a sparse polynomial system: an $n \times n$ *t*-nominal system (where n and t are positive integers).
- The case of $t \le n+1$ is generally well understood.
- The case of $t \ge n+3$ is difficult to work with.
- The case of t = n + 2 is an ongoing problem

We say that any $n \times n$ (n+2)-nominal system is supported on a circuit (as long as it fufills some non-degeneracy requirements).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Past Literature

• Researchers have known since at least 2006 that solving polynomial circuit systems reduces to finding solutions to the univariate logarithmic form

 $\Lambda(x) = b_1 \log(\gamma_{1,1} x + \gamma_{1,0}) + \ldots + b_{n+1} \log(\gamma_{n+1,1} x + \gamma_{n+1,0})$

• Rojas has performed considerable work in both analyzing the behaviour of these logarithmic sums and developing algorithms to count their roots (Rojas 1).

▲御▶ ▲注▶ ▲注▶

Motivation

- Knowledge of root spacing informs better usage of Newton's method.
- Newton's method is nearly optimal for zero finding.
- By Rolle's Theorem, roots and critical values are interlaced.

伺下 イヨト イヨト

Experimental Approach

- Our experimentation was performed through MATLAB code.
- Through experimentation we have analyzed, among other items, the following quantities:
 - Coefficients of univariate reduction.
 - Magnitude of critical values.
 - Spacing of critical values.
 - Spacing of roots.
- Each 'data point' present was obtained by taking the arithmetic mean of various 'trials' in which the initial coefficients of the system were uniform random integers.

伺下 イヨト イヨト

Analytical Approach

• Through a canonical form, we can restrict our attention to "tetrahedral circuits" whose exponent matrices are of the form:

$$A_d(\mathbf{v}) = \begin{bmatrix} d & 0 & \dots & 0 & v_1 & 0 \\ 0 & d & \dots & 0 & v_2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & d & v_n & 0 \end{bmatrix}$$

- When analyzing how quantities change as a function of *d*, we will often employ asymptotic arguments.
- When applicable, we will also employ the Shapiro-Wilk test, a statistical test to determine normality (Shapiro and Wilk 591).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Coefficients

Parameters (first): HMAX = 10,000, (second): HMAX = 550,

< □ ▶ < 同 ▶

Critical Values

Parameters: $\mathbf{v} = [54, 31, 17]$

< □ > < □ > < □

문 문 문

Critical Spacing

< □ > < □ > < □ > < □ > < □ >

1

Root Spacing

< □ > < □ > < □ > < □ > < □ >

1

Further Work

The following processes are ongoing and will hopefully be finalized in the months following the program's conclusion.

- Determine the role of the discriminant.
- Properly characterize discovered probability distributions.
- Further formalize discovered patterns and prove more conjectures.

.

References

Ali, Owais. "Gaussian Elimination." MathWorks, 4 May 2022, www.mathworks.com/matlabcentral/fileexchange/109590-gaussian-elimination?s_t $id = prof_contriblnk$.

BenSada, Ahmed. "Shapiro-Wilk and Shapiro-Francia normality tests." MATLAB Central File Exchange, June 2014, www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests. Accessed 17 July 2022.

Bertrand, Benoît, et al. "Polynomial Systems with Few Real Zeroes." Mathematische Zeitschrift, vol. 253, no. 2, 23 Feb. 2006, pp. 361-85.Springer Link, https://doi.org/10.1007/s00209-005-0912-8. Accessed 9 June 2022.

・ロト ・四ト ・ヨト ・ヨト

Malajovich-Munoz, Gregorio. On the Complexity of Path-Following Newton Algorithms for Solving Systems of Polynomial Equations with Integer Coefficients. 1993. U of California at Berkeley, PhD thesis. ProQuest Dissertations and Theses, www.proquest.com/pqdtglobal/docview/304077744/ BAC7DA1D26E14E8FPQ/1?accountid=7082.

Rojas, J. Maurice. "Counting Real Roots in Polynomial-Time for Systems Supported on Circuits." 9 Dec. 2020. *arXiv*, https://doi.org/10.48550/arXiv.2012.04868.

Shapiro, S. S., and M. B. Wilk. "An Analysis of Variance Test for Normality." Biometrika, vol. 52, no. 3/4, Dec. 1965, p. 591. JSTOR, https://doi.org/10.2307/2333709.

イロト イヨト イヨト -