Polynomial Systems Supported on Circuits

Zachary Nunez
REU Student - Algorithmic Algebraic Geometry, Texas A\&M University

July 18, 2022

Goals

- Understand the behaviour of polynomial circuit system.
- Develop tools to analyze and characterize circuit systems
- Help develop algorithms to quickly solve circuit systems.

Introduction

- Consider the problem of solving (in \mathbb{R}) a sparse polynomial system: an $n \times n$ t-nominal system (where n and t are positive integers).
- The case of $t \leq n+1$ is generally well understood.
- The case of $t \geq n+3$ is difficult to work with.
- The case of $t=n+2$ is an ongoing problem

We say that any $n \times n(n+2)$-nominal system is supported on a circuit (as long as it fufills some non-degeneracy requirements).

Past Literature

- Researchers have known since at least 2006 that solving polynomial circuit systems reduces to finding solutions to the univariate logarithmic form

$$
\Lambda(x)=b_{1} \log \left(\gamma_{1,1} x+\gamma_{1,0}\right)+\ldots+b_{n+1} \log \left(\gamma_{n+1,1} x+\gamma_{n+1,0}\right)
$$

- Rojas has performed considerable work in both analyzing the behaviour of these logarithmic sums and developing algorithms to count their roots (Rojas 1).

Motivation

- Knowledge of root spacing informs better usage of Newton's method.
- Newton's method is nearly optimal for zero finding.
- By Rolle's Theorem, roots and critical values are interlaced.

Experimental Approach

- Our experimentation was performed through MATLAB code.
- Through experimentation we have analyzed, among other items, the following quantities:
- Coefficients of univariate reduction.
- Magnitude of critical values.
- Spacing of critical values.
- Spacing of roots.
- Each 'data point' present was obtained by taking the arithmetic mean of various 'trials' in which the initial coefficients of the system were uniform random integers.

Analytical Approach

- Through a canonical form, we can restrict our attention to "tetrahedral circuits" whose exponent matrices are of the form:

$$
A_{d}(\mathbf{v})=\left[\begin{array}{cccccc}
d & 0 & \ldots & 0 & v_{1} & 0 \\
0 & d & \ldots & 0 & v_{2} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & d & v_{n} & 0
\end{array}\right]
$$

- When analyzing how quantities change as a function of d, we will often employ asymptotic arguments.
- When applicable, we will also employ the Shapiro-Wilk test, a statistical test to determine normality (Shapiro and Wilk 591).

Coefficients

Parameters (first): $H M A X=10,000$, (second): HMAX = 550,

Critical Values

Parameters: $\mathbf{v}=[54,31,17]$

Critical Spacing

Root Spacing

Further Work

The following processes are ongoing and will hopefully be finalized in the months following the program's conclusion.

- Determine the role of the discriminant.
- Properly characterize discovered probability distributions.
- Further formalize discovered patterns and prove more conjectures.

References

Ali, Owais. "Gaussian Elimination." MathWorks, 4 May 2022, www.mathworks.com/ matlabcentral/fileexchange/109590-gaussian-elimination $\mathrm{s}_{t} i d=$ prof $_{c}$ ontriblnk.

BenSada, Ahmed. "Shapiro-Wilk and Shapiro-Francia normality tests." MATLAB Central File Exchange, June 2014, www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests. Accessed 17 July 2022.

Bertrand, Benoît, et al. "Polynomial Systems with Few Real Zeroes." Mathematische Zeitschrift, vol. 253, no. 2, 23 Feb. 2006, pp. 361-85.Springer Link, https://doi.org/10.1007/s00209-005-0912-8. Accessed 9 June 2022.

Malajovich-Munoz, Gregorio. On the Complexity of Path-Following Newton Algorithms for Solving Systems of Polynomial Equations with Integer Coefficients. 1993. U of California at Berkeley, PhD thesis. ProQuest Dissertations and Theses, www.proquest.com/pqdtglobal/docview/304077744/ BAC7DA1D26E14E8FPQ/1? accountid=7082.

Rojas, J. Maurice. "Counting Real Roots in Polynomial-Time for Systems Supported on Circuits." 9 Dec. 2020. arXiv, https://doi.org/10.48550/arXiv.2012.04868.

Shapiro, S. S., and M. B. Wilk. "An Analysis of Variance Test for Normality." Biometrika, vol. 52, no. 3/4, Dec. 1965, p. 591. JSTOR, https://doi.org/10.2307/2333709.

