A Faster Randomized Algorithm for Counting Roots in $\mathbb{Z}/(p^k)$

Leann Kopp

Department of Mathematics, Texas A&M University NSF DMS – 1757872

July 16, 2018

Today we will...

- Review the randomized algorithm for counting mod p^k
- See some specific examples regarding computational time
- Go over the complexity bound of the algorithm
- Discuss a bound on the number of roots mod p^k

- Counting roots in Z/(p)[x] is easy if you allow randomization, thanks to the work of Zieler, Berlekamp, and many others, dating back to the 1960's.
- These methods take advantage of Z/(p)[x] being a unique factorization domain.

- Counting roots in Z/(p)[x] is easy if you allow randomization, thanks to the work of Zieler, Berlekamp, and many others, dating back to the 1960's.
- These methods take advantage of Z/(p)[x] being a unique factorization domain.
 - One simple method: compute the $gcd(x^p x, f)$ in $\mathbb{Z}/(p)$
 - By Fermat's Little Theorem, we know that for a prime p, $x^p x = x(x 1) \cdots (x (p 1)) \mod p$

- Counting roots in Z/(p)[x] is easy if you allow randomization, thanks to the work of Zieler, Berlekamp, and many others, dating back to the 1960's.
- These methods take advantage of Z/(p)[x] being a unique factorization domain.
 - One simple method: compute the $gcd(x^p x, f)$ in $\mathbb{Z}/(p)$
 - By Fermat's Little Theorem, we know that for a prime p, $x^p x = x(x 1) \cdots (x (p 1)) \mod p$
- ℤ/(p^k)[x] is not a unique factorization domain, so we have to be more careful when counting in ℤ/(p^k)[x].

- Counting roots in Z/(p)[x] is easy if you allow randomization, thanks to the work of Zieler, Berlekamp, and many others, dating back to the 1960's.
- These methods take advantage of Z/(p)[x] being a unique factorization domain.
 - One simple method: compute the $gcd(x^p x, f)$ in $\mathbb{Z}/(p)$
 - By Fermat's Little Theorem, we know that for a prime p, $x^p x = x(x 1) \cdots (x (p 1)) \mod p$
- ℤ/(p^k)[x] is not a unique factorization domain, so we have to be more careful when counting in ℤ/(p^k)[x].
 - Example: $(x+3)^2 = x(x+6) \mod 9$.

Background to Algorithm

Consider the Taylor expansion of a polynomial $f \in \mathbb{Z}[x]$ of degree d, where $\zeta \in \mathbb{Z}$ is a root of the mod p reduction of f and $\varepsilon \in \{0, \ldots, p^k - 1\}$:

$$f(\zeta + p\varepsilon) = f(\zeta) + f'(\zeta)p\varepsilon + \cdots + \frac{1}{(k-1)!}f^{(k-1)}(\zeta)(p\varepsilon)^{k-1} \mod p^k.$$

Background to Algorithm

Consider the Taylor expansion of a polynomial $f \in \mathbb{Z}[x]$ of degree d, where $\zeta \in \mathbb{Z}$ is a root of the mod p reduction of f and $\varepsilon \in \{0, \ldots, p^k - 1\}$:

$$f(\zeta + p\varepsilon) = f(\zeta) + f'(\zeta)p\varepsilon + \cdots + \frac{1}{(k-1)!}f^{(k-1)}(\zeta)(p\varepsilon)^{k-1} \mod p^k.$$

Definition: Let $s \in \{1, \ldots, k\}$ be the maximal integer such that p^s divides each of $f(\zeta), \ldots, \frac{1}{(k-1)!} f^{(k-1)}(\zeta) (p\varepsilon)^{k-1}$.

Background to Algorithm

Consider the Taylor expansion of a polynomial $f \in \mathbb{Z}[x]$ of degree d, where $\zeta \in \mathbb{Z}$ is a root of the mod p reduction of f and $\varepsilon \in \{0, \ldots, p^k - 1\}$:

$$f(\zeta + p\varepsilon) = f(\zeta) + f'(\zeta)p\varepsilon + \cdots + \frac{1}{(k-1)!}f^{(k-1)}(\zeta)(p\varepsilon)^{k-1} \mod p^k.$$

Definition: Let $s \in \{1, \ldots, k\}$ be the maximal integer such that p^s divides each of $f(\zeta), \ldots, \frac{1}{(k-1)!} f^{(k-1)}(\zeta) (p\varepsilon)^{k-1}$.

Lemma (Hensel's Lemma)

If $f \in \mathbb{Z}[x]$ is a polynomial with integer coefficients, p is prime, and $\zeta_J \in \{0, \ldots, p^{J-1} - 1\}$ is a root of $f \pmod{p^J}$ and $f'(\zeta_J) \neq 0 \pmod{p}$, then there is a unique $\zeta \in \{0, \ldots, p^{J+1} - 1\}$ with $f(\zeta) = 0 \pmod{p^{J+1}}$ and $\zeta = \zeta_J \pmod{p^J}$.

For each root ζ of the mod p reduction of f, we have the following:

• By Hensel's Lemma, we have a single lift (a unique ε) when s = 1.

For each root ζ of the mod p reduction of f, we have the following:

- By Hensel's Lemma, we have a single lift (a unique ε) when s = 1.
- When s = k, the expression $f(\zeta) + \cdots + \frac{1}{(k-1)!} f^{(k-1)}(\zeta) (p\varepsilon)^{k-1}$ vanishes identically mod p^k , giving p^{k-1} lifts.

For each root ζ of the mod p reduction of f, we have the following:

- By Hensel's Lemma, we have a single lift (a unique ε) when s = 1.
- When s = k, the expression $f(\zeta) + \cdots + \frac{1}{(k-1)!} f^{(k-1)}(\zeta) (p\varepsilon)^{k-1}$ vanishes identically mod p^k , giving p^{k-1} lifts.
- When s ∈ {2,..., k − 1}, we can reapply the algorithm to an instance of counting roots for the polynomial
 f_ζ(ε) = ^{f(ζ)}/_{p^s} + ^{f'(ζ)}/_{p^{s-1}}ε + ··· + ^{f(k-1)(ζ)}/_{(k-1)!p^{s-(k-1)}}ε^{k-1} in ℤ/(p^{k-s}).

With
$$p = 3, k = 7$$
:

$$f(x) = x^{10} - 10x + 738$$

 $f(x) = x(x+2)^9 \mod 3$

$$f(x) = x^{10} - 10x + 738$$

$$f(x) = x(x+2)^9 \mod 3$$

$$\zeta_0 = 0 \text{ with } s(0,0) = 1$$

$$\zeta_1 = 1 \text{ with } s(1,1) = 4$$

$$f(x) = x^{10} - 10x + 738$$

$$f(x) = x(x+2)^9 \mod 3$$

$$\zeta_0 = 0 \text{ with } s(0,0) = 1$$

$$\zeta_1 = 1 \text{ with } s(1,1) = 4$$

$$f(x) = x^{10} - 10x + 738$$

$$f(x) = x(x+2)^9 \mod 3$$

$$\zeta_0 = 0 \text{ with } s(0,0) = 1$$

$$\zeta_1 = 1 \text{ with } s(1,1) = 4$$

$$f_{\zeta_1}(\varepsilon) = x^3 + 2x^2 \mod 3, k = 3$$

$$\zeta_2 = 1 \text{ with } s(2, 1) = 1$$

$$\zeta_3 = 0 \text{ with } s(3, 1) = 2$$

With p = 3, k = 7:

1

$$f(x) = x^{10} - 10x + 738$$

$$f(x) = x(x+2)^9 \mod 3$$

$$\zeta_0 = 0 \text{ with } s(0,0) = 1$$

$$\zeta_1 = 1 \text{ with } s(1,1) = 4$$

$$f_{\zeta_1}(\varepsilon) = x^3 + 2x^2 \mod 3, k = 3$$

$$\zeta_2 = 1 \text{ with } s(2, 1) = 1$$

$$\zeta_3 = 0 \text{ with } s(3, 0) = 2$$

$$f(x) = x^{10} - 10x + 738$$

$$f(x) = x(x+2)^9 \mod 3$$

$$\zeta_0 = 0 \text{ with } s(0,0) = 1$$

$$\zeta_1 = 1 \text{ with } s(1,1) = 4$$

$$f_{\zeta_1}(\varepsilon) = x^3 + 2x^2 \mod 3, k = 3$$

 $\zeta_2 = 1$ with $s(2, 1) = 1$
 $\zeta_3 = 0$ with $s(3, 0) = 2$

$$\begin{split} f_{\zeta_3}(\varepsilon) &= 2x^2 + 1 \mod 3, k = 1 \\ \zeta_4 &= 1 \text{ with } s(4,1) = 1 \\ \zeta_5 &= 2 \text{ with } s(5,2) = 1. \end{split}$$

$$f(x) = x^{10} - 10x + 738$$

$$f(x) = x(x+2)^9 \mod 3$$

$$\zeta_0 = 0 \text{ with } s(0,0) = 1$$

$$\zeta_1 = 1 \text{ with } s(1,1) = 4$$

$$f_{\zeta_1}(\varepsilon) = x^3 + 2x^2 \mod 3, k = 3$$

 $\zeta_2 = 1 \text{ with } s(2,1) = 1$
 $\zeta_3 = 0 \text{ with } s(3,0) = 2$

$$\begin{aligned} &f_{\zeta_3}(\varepsilon) = 2x^2 + 1 \mod 3, k = 1 \\ &\zeta_4 = 1 \text{ with } s(4,1) = 1 \\ &\zeta_5 = 2 \text{ with } s(5,2) = 1. \end{aligned}$$

Ideas Behind Proof of Complexity Bound

• We use Kedlaya-Umans fast $\mathbb{Z}/(p)[x]$ factoring algorithm, which takes time $d^{1.5+o(1)}(\log p)^{1+o(1)} + d^{1+o(1)}(\log p)^{2+o(1)}$ for a degree d polynomial.

Ideas Behind Proof of Complexity Bound

- We use Kedlaya-Umans fast $\mathbb{Z}/(p)[x]$ factoring algorithm, which takes time $d^{1.5+o(1)}(\log p)^{1+o(1)} + d^{1+o(1)}(\log p)^{2+o(1)}$ for a degree d polynomial.
- To simplify, the complexity is less than or equal to (the number of nodes in the recursion tree)(the complexity of factoring over (Z/(p))[x]).

Ideas Behind Proof of Complexity Bound

- We use Kedlaya-Umans fast $\mathbb{Z}/(p)[x]$ factoring algorithm, which takes time $d^{1.5+o(1)}(\log p)^{1+o(1)} + d^{1+o(1)}(\log p)^{2+o(1)}$ for a degree d polynomial.
- To simplify, the complexity is less than or equal to (the number of nodes in the recursion tree)(the complexity of factoring over (Z/(p))[x]).
- The depth and branching of our recurrence tree is strongly limited by the value of *k*.
- Optimizing parameters, the worst case is when $d \approx e \approx 2.71828$ and the depth is $\frac{k}{e}$.

• The randomized algorithm counts the number of roots in time $d^{1.5+o(1)}(\log p)^{2+o(1)}(1.12)^k$.

- The randomized algorithm counts the number of roots in time $d^{1.5+o(1)}(\log p)^{2+o(1)}(1.12)^k$.
- This complexity bound refers to counting roots, not to finding/storing them; we can have over $\lfloor \frac{d}{k} \rfloor p^{k-1}$ roots, so we cannot achieve this same time bound if we store every single root.

- The randomized algorithm counts the number of roots in time $d^{1.5+o(1)}(\log p)^{2+o(1)}(1.12)^k$.
- This complexity bound refers to counting roots, not to finding/storing them; we can have over $\lfloor \frac{d}{k} \rfloor p^{k-1}$ roots, so we cannot achieve this same time bound if we store every single root.

Example: The polynomial $f(x) = (x - 2)^7 (x - 1)^3$ with p = 17, k = 7 has 24, 221, 090 roots (this is greater than $\lfloor \frac{d}{k} \rfloor p^{k-1} = 24, 137, 569$). Computing this number of roots took .004 seconds, but storing and listing them all would take much longer.

- The randomized algorithm counts the number of roots in time $d^{1.5+o(1)}(\log p)^{2+o(1)}(1.12)^k$.
- This complexity bound refers to counting roots, not to finding/storing them; we can have over $\lfloor \frac{d}{k} \rfloor p^{k-1}$ roots, so we cannot achieve this same time bound if we store every single root.

Example: The polynomial $f(x) = (x-2)^7(x-1)^3$ with p = 17, k = 7 has 24, 221, 090 roots (this is greater than $\lfloor \frac{d}{k} \rfloor p^{k-1} = 24, 137, 569$). Computing this number of roots took .004 seconds, but storing and listing them all would take much longer.

(Counting the number of roots using brute force took 39 minutes).

- The randomized algorithm counts the number of roots in time $d^{1.5+o(1)}(\log p)^{2+o(1)}(1.12)^k$.
- In comparison, brute force counting takes time $\approx p^k$.
- We expect the randomized algorithm to be faster even for p as small as 2 (1.12^k vs. 2^k).

The table below shows the average difference in computation time for the number of roots of 100 random polynomials of degree less than or equal to 100 in $\mathbb{Z}/(2^k)$ for the given k, between brute force and the randomized algorithm (negative implies brute force was faster):

k	8	9	10	11	15
Avg Diff (in seconds)	-0.0011	-0.00029	0.0028	0.01701	0.32499

- We expect the randomized algorithm to take the longest when a polynomial has many degenerate roots because a polynomial of this type will require many recursive calls.
- Polynomials with many degenerate roots do take longer than a random polynomial, but overall the randomized algorithm still outperforms other methods.

- We expect the randomized algorithm to take the longest when a polynomial has many degenerate roots because a polynomial of this type will require many recursive calls.
- Polynomials with many degenerate roots do take longer than a random polynomial, but overall the randomized algorithm still outperforms other methods.
- Example: Counting roots of $f(x) = (x 1)(x 2)^2 \cdots (x 10)^{10}$ in $\mathbb{Z}/(31^{10})$ took 6.4 seconds using the randomized algorithm.
- For comparison, a random polynomial of the same degree (55) took 1 millisecond with the randomized algorithm, and counting roots using brute force for just 31⁶ took 2.7 hours.

The number of roots of a polynomial in $\mathbb{Z}/(p^k)$ can be very large, especially for polynomials with many degenerate roots mod p.

Example: $(x - 2)^{50}$ has 5132842958629010337866366828195 (31 digit number) roots in $\mathbb{Z}/(25^{29})$.

The number of roots of a polynomial in $\mathbb{Z}/(p^k)$ can be very large, especially for polynomials with many degenerate roots mod p.

Example: $(x - 2)^{50}$ has 5132842958629010337866366828195 (31 digit number) roots in $\mathbb{Z}/(25^{29})$.

But we do have an upper bound on the number of roots based on the sizes of k, p and d.

Lemma

If a root ζ of the mod p reduction of f has multiplicity j, then $s_{\zeta} \leq j$, where s_{ζ} is the greatest integer such that $p^{s_{\zeta}}$ divides each of $f(\zeta), \ldots, \frac{f^{(k-1)}(\zeta)}{(k-1)!}p^{k-1}\varepsilon^{k-1}$.

Proof: If ζ has multiplicity j, then $f(\zeta) = \cdots = f^{j-1}(\zeta) = 0 \pmod{p}$, but $f^{(j)}(\zeta) \neq 0 \pmod{p}$. So $\frac{f^j(\zeta)}{j!}p^j$ is divisible by p^j but not p^{j+1} and therefore $s_{\zeta} \leq j$.

Lemma

If a root ζ of the mod p reduction of f has multiplicity j, then $s_{\zeta} \leq j$, where s_{ζ} is the greatest integer such that $p^{s_{\zeta}}$ divides each of $f(\zeta), \ldots, \frac{f^{(k-1)}(\zeta)}{(k-1)!}p^{k-1}\varepsilon^{k-1}$.

Proof: If ζ has multiplicity j, then $f(\zeta) = \cdots = f^{j-1}(\zeta) = 0 \pmod{p}$, but $f^{(j)}(\zeta) \neq 0 \pmod{p}$. So $\frac{f^{j}(\zeta)}{j!}p^{j}$ is divisible by p^{j} but not p^{j+1} and therefore $s_{\zeta} \leq j$.

This is important because it tells us that we can have at most $\lfloor \frac{d}{s} \rfloor$ roots of $f \mod p$ for each s.

Theorem

Let p be a prime, $f \in \mathbb{Z}[x]$ a polynomial of degree d, and $k \in \mathbb{N}$ such that $d \ge k \ge 2$. Then the number of roots of f in $\mathbb{Z}/(p^k)$ is less than or equal to $\min\{d, p\}p^{k-1}$.

Theorem

Let p be a prime, $f \in \mathbb{Z}[x]$ a polynomial of degree d, and $k \in \mathbb{N}$ such that $d \ge k \ge 2$. Then the number of roots of f in $\mathbb{Z}/(p^k)$ is less than or equal to min $\{d, p\}p^{k-1}$.

We know there are polynomials with more than $\min\{\lfloor \frac{d}{k} \rfloor, p\}p^{k-1}$ roots in $\mathbb{Z}/(p^k)$, so our bound is within a factor of k of optimality.

Polynomials with $d \ge p$ having p^k roots in $\mathbb{Z}/(p^k)$:

• $f(x) = (x^p - x)^k$ is a polynomial of degree pk with p^k roots in $\mathbb{Z}/(p^k)$.

Polynomials with $d \ge p$ having p^k roots in $\mathbb{Z}/(p^k)$:

- $f(x) = (x^p x)^k$ is a polynomial of degree pk with p^k roots in $\mathbb{Z}/(p^k)$.
- g(x) = (x^{p^k-p^{k-1}} − 1)x^k has degree p^k − p^{k-1} + k and also vanishes on all of Z/(p^k).

When k = 2, there are a maximum of min $\{\lfloor \frac{d}{2} \rfloor, p\}p + (d \mod k)$ roots in $\mathbb{Z}/(p^2)$.

This upper bound is sharp. For example, the with p = 5 the degree 3 polynomial $(x - 1)^2 x$ has $\lfloor \frac{3}{2} \rfloor \cdot 5 + (3 \mod 2) = 6$ roots in $\mathbb{Z}/(p^2)$.

- We have a Las Vegas randomized algorithm for counting the number of roots of a degree d polynomial f ∈ Z[x] in Z/(p^k).
- The complexity of the randomized algorithm is given by $\mathcal{O}(1.12^k)$.
- We see time improvements for computations using the randomized algorithm over brute-force counting even for p = 2.
- An upper bound on the number of roots is min{d, p}p^{k-1}, and a sharp upper bound for k = 2 is given by min{L^d₂], p}p + (d mod k).