
A Faster Randomized Algorithm for Counting Roots in
Z/(pk)

Natalie Randall

Department of Mathematics, Texas A&M University
DMS - 1757872
Austin College

16th July 2018

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 1 / 15

Applications

Exponential Sums:

S(f , n) =

∣∣∣∣∣
n∑

i=1

e
2π
√
−1g(x)
n

∣∣∣∣∣
In various applications, one needs an estimate for S(f , n), where
g ∈ Z[x].

Work done by Cochrane and Zheng (2001) shows that estimating
S(f , n) is closely related to counting roots of g ∈ Z/(pk).

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 2 / 15

Applications

Exponential Sums:

S(f , n) =

∣∣∣∣∣
n∑

i=1

e
2π
√
−1g(x)
n

∣∣∣∣∣
In various applications, one needs an estimate for S(f , n), where
g ∈ Z[x].

Work done by Cochrane and Zheng (2001) shows that estimating
S(f , n) is closely related to counting roots of g ∈ Z/(pk).

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 2 / 15

Applications

Counting roots in the p-adic integers (Zp) has numerous applications
to Diophantine equations (e.g., Skolem’s method [Smart, 1999]).

Counting roots in Z/(pk) is also closely related to counting roots in
Qp.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 3 / 15

Applications

Counting roots in the p-adic integers (Zp) has numerous applications
to Diophantine equations (e.g., Skolem’s method [Smart, 1999]).

Counting roots in Z/(pk) is also closely related to counting roots in
Qp.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 3 / 15

Main Results

There is a Las Vegas randomized algorithm that counts the roots of
any f ∈ Z[x] (such that f is not identically 0 modulo p) of degree d
in time:

d1.5+o(1)(log p)2+o(1)1.12k

”Las Vegas” refers to an algorithm that fails with probability < 1
3 , but

correctly announces this failure. So, to get failure probability < 1
3100

,
just run the algorithm 100 times.

Las Vegas algorithms are accepted by and occur frequently in
algorithmic number theory (e.g., factoring polynomials over finite
fields and primality testing).

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 4 / 15

Main Results

There is a Las Vegas randomized algorithm that counts the roots of
any f ∈ Z[x] (such that f is not identically 0 modulo p) of degree d
in time:

d1.5+o(1)(log p)2+o(1)1.12k

”Las Vegas” refers to an algorithm that fails with probability < 1
3 , but

correctly announces this failure. So, to get failure probability < 1
3100

,
just run the algorithm 100 times.

Las Vegas algorithms are accepted by and occur frequently in
algorithmic number theory (e.g., factoring polynomials over finite
fields and primality testing).

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 4 / 15

Main Results

There is a Las Vegas randomized algorithm that counts the roots of
any f ∈ Z[x] (such that f is not identically 0 modulo p) of degree d
in time:

d1.5+o(1)(log p)2+o(1)1.12k

”Las Vegas” refers to an algorithm that fails with probability < 1
3 , but

correctly announces this failure. So, to get failure probability < 1
3100

,
just run the algorithm 100 times.

Las Vegas algorithms are accepted by and occur frequently in
algorithmic number theory (e.g., factoring polynomials over finite
fields and primality testing).

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 4 / 15

The Algorithm

The Algorithm

From 1 to q do:

if 𝑜𝑟𝑑𝑝൬

൰

𝑓𝑖 𝑧

𝑖!
∗

𝑝𝑖 < 𝑠 then

𝑠 =

𝑜𝑟𝑑𝑝൬

൰

𝑓𝑖 𝑧

𝑖!
∗

𝑝𝑖

If
𝑜𝑟𝑑𝑝(𝑓(𝑧)) <

𝑠, then 𝑠 =
𝑜𝑟𝑑𝑝(𝑓 𝑧)

end if;

If s ≥ 𝑘 then
𝑐𝑜𝑢𝑛𝑡 =

𝑐𝑜𝑢𝑛𝑡 + 𝑝𝑘−1

Else if 𝑠 = 1 then
if 𝑓’(𝑧) 𝑚𝑜𝑑 𝑝 ≠
0 then 𝑐𝑜𝑢𝑛𝑡 =
𝑐𝑜𝑢𝑛𝑡 + 1

Else 𝑛𝑒𝑤𝑓 =
𝑓(𝑧)

𝑝𝑠

From 1 to 𝑞 do
𝑛𝑒𝑤𝑓
= 𝑛𝑒𝑤𝑓

+
𝑓𝑖(𝑧)

𝑖! (𝑝𝑠−𝑖)
∗ 𝑥𝑖

𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 +
𝑝𝑠−1 ∗

𝑐𝑜𝑢𝑛𝑡𝑘(𝑛𝑒𝑤𝑓, 𝑝, 𝑘 −
𝑠);

return count;

Compute g =
𝐺𝑐𝑑(

)
𝑥𝑝 −

𝑥, 𝑓 𝑚𝑜𝑑 𝑝
and find the

roots of g
(mod p)

For each root 𝑧
of 𝑔do:

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 5 / 15

The Algorithm

The Key Trick

For a polynomial f ∈ Z/(pk), we compute its roots mod p by taking
the Gcd(xp − x , f) mod p

Then, given any root ζ ∈ Z/(p) of f and an ε ∈ {0, 1, · · · , pk−1 − 1},
we have a perturbation as follows (using a Taylor series expansion):

f (ζ + p · ε) = f (ζ) + f ′(ζ)pε+
1

2
f ′′(ζ)p2ε2 + ...

...+
1

(k − 1)!
f (k−1)(ζ)pk−1εk−1 mod pk

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 6 / 15

The Algorithm

The Key Trick

For a polynomial f ∈ Z/(pk), we compute its roots mod p by taking
the Gcd(xp − x , f) mod p

Then, given any root ζ ∈ Z/(p) of f and an ε ∈ {0, 1, · · · , pk−1 − 1},
we have a perturbation as follows (using a Taylor series expansion):

f (ζ + p · ε) = f (ζ) + f ′(ζ)pε+
1

2
f ′′(ζ)p2ε2 + ...

...+
1

(k − 1)!
f (k−1)(ζ)pk−1εk−1 mod pk

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 6 / 15

The Algorithm

The Key Trick

By finding a maximum s ∈ {1, ..., k} such that

ps | f (ζ)ps , ...,
1

(k−1)! f
(k−1)(ζ)pk−1 we get:

ps

(
f (ζ)

ps
+

f ′(ζ)

ps−1
· ε+ ...+

f (m)(ζ)

m! · ps−m
· εm

)
mod pk

where we let m = min(degree(f), k − 1)

We can then take the parenthetical part and write this as a function
in terms of ε

g(ε) :=

(
f (ζ)

ps
+

f ′(ζ)

ps−1
· ε+ ...+

f (m)(ζ)

m! · ps−m
· εm

)
mod pk−s

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 7 / 15

The Algorithm

The Key Trick

By finding a maximum s ∈ {1, ..., k} such that

ps | f (ζ)ps , ...,
1

(k−1)! f
(k−1)(ζ)pk−1 we get:

ps

(
f (ζ)

ps
+

f ′(ζ)

ps−1
· ε+ ...+

f (m)(ζ)

m! · ps−m
· εm

)
mod pk

where we let m = min(degree(f), k − 1)

We can then take the parenthetical part and write this as a function
in terms of ε

g(ε) :=

(
f (ζ)

ps
+

f ′(ζ)

ps−1
· ε+ ...+

f (m)(ζ)

m! · ps−m
· εm

)
mod pk−s

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 7 / 15

The Algorithm

Main Idea

In previous algorithms, we were able to use this s to keep track of the
cluster of lifts that each root produced.

The Case k = 4

Depending on the value of s, each root ζ generates 0, 1, p, 2p, p2, 2p2,
3p2, or p3 lifts

So, while it’s possible to predict the number of roots via multiple
cases by evaluating ordp(f (ζ)), ordp(f ′(ζ)), ..., it is easier to rely on
recursion for the cases where s ∈ {2, ..., k − 1}.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 8 / 15

The Algorithm

Main Idea

In previous algorithms, we were able to use this s to keep track of the
cluster of lifts that each root produced.

The Case k = 4

Depending on the value of s, each root ζ generates 0, 1, p, 2p, p2, 2p2,
3p2, or p3 lifts

So, while it’s possible to predict the number of roots via multiple
cases by evaluating ordp(f (ζ)), ordp(f ′(ζ)), ..., it is easier to rely on
recursion for the cases where s ∈ {2, ..., k − 1}.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 8 / 15

The Algorithm

Main Idea

In previous algorithms, we were able to use this s to keep track of the
cluster of lifts that each root produced.

The Case k = 4

Depending on the value of s, each root ζ generates 0, 1, p, 2p, p2, 2p2,
3p2, or p3 lifts

So, while it’s possible to predict the number of roots via multiple
cases by evaluating ordp(f (ζ)), ordp(f ′(ζ)), ..., it is easier to rely on
recursion for the cases where s ∈ {2, ..., k − 1}.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 8 / 15

The Algorithm

Implementing the Algorithm

Here is where the randomization of the algorithm is obtained- when
we compute the roots mod p.

Compute g = Gcd(xp − x , f) mod p

Calculate the roots of g mod p, and for each root ζ implement the
following steps:

Let s = k and let q = min(degree(f), k − 1);

For i from 1 to q, if ordp(f i (ζ)
i! · p

i) < s then let s = ordp(f i (ζ)
i! · p

i);

If ordp(f (ζ)) < s then let s = ordp(f (ζ));

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 9 / 15

The Algorithm

Implementing the Algorithm

Here is where the randomization of the algorithm is obtained- when
we compute the roots mod p.

Compute g = Gcd(xp − x , f) mod p

Calculate the roots of g mod p, and for each root ζ implement the
following steps:

Let s = k and let q = min(degree(f), k − 1);

For i from 1 to q, if ordp(f i (ζ)
i! · p

i) < s then let s = ordp(f i (ζ)
i! · p

i);

If ordp(f (ζ)) < s then let s = ordp(f (ζ));

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 9 / 15

The Algorithm

Implementing the Algorithm

Here is where the randomization of the algorithm is obtained- when
we compute the roots mod p.

Compute g = Gcd(xp − x , f) mod p

Calculate the roots of g mod p, and for each root ζ implement the
following steps:

Let s = k and let q = min(degree(f), k − 1);

For i from 1 to q, if ordp(f i (ζ)
i! · p

i) < s then let s = ordp(f i (ζ)
i! · p

i);

If ordp(f (ζ)) < s then let s = ordp(f (ζ));

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 9 / 15

The Algorithm

Implementing the Algorithm

Here is where the randomization of the algorithm is obtained- when
we compute the roots mod p.

Compute g = Gcd(xp − x , f) mod p

Calculate the roots of g mod p, and for each root ζ implement the
following steps:

Let s = k and let q = min(degree(f), k − 1);

For i from 1 to q, if ordp(f i (ζ)
i! · p

i) < s then let s = ordp(f i (ζ)
i! · p

i);

If ordp(f (ζ)) < s then let s = ordp(f (ζ));

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 9 / 15

The Algorithm

Implementing the Algorithm

Depending on the value of s, we get three distinct cases:

If s ≥ k, then let count = count + pk−1 (ζ has exactly pk−1 lifts)

Else if s = 1 then if f ′(ζ) mod p 6= 0 then let count = count + 1 (ζ
has 1 unique lift);

Else let newf = f (ζ)
ps ; for i from 1 to q :

newf = newf +
f i (ζ)

i ! · ps−i
· x i

Let count = count + ps−1 · countk(newf , p, k − s)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 10 / 15

The Algorithm

Implementing the Algorithm

Depending on the value of s, we get three distinct cases:

If s ≥ k, then let count = count + pk−1 (ζ has exactly pk−1 lifts)

Else if s = 1 then if f ′(ζ) mod p 6= 0 then let count = count + 1 (ζ
has 1 unique lift);

Else let newf = f (ζ)
ps ; for i from 1 to q :

newf = newf +
f i (ζ)

i ! · ps−i
· x i

Let count = count + ps−1 · countk(newf , p, k − s)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 10 / 15

The Algorithm

Implementing the Algorithm

Depending on the value of s, we get three distinct cases:

If s ≥ k, then let count = count + pk−1 (ζ has exactly pk−1 lifts)

Else if s = 1 then if f ′(ζ) mod p 6= 0 then let count = count + 1 (ζ
has 1 unique lift);

Else let newf = f (ζ)
ps ; for i from 1 to q :

newf = newf +
f i (ζ)

i ! · ps−i
· x i

Let count = count + ps−1 · countk(newf , p, k − s)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 10 / 15

The Algorithm

Implementing the Algorithm

Depending on the value of s, we get three distinct cases:

If s ≥ k, then let count = count + pk−1 (ζ has exactly pk−1 lifts)

Else if s = 1 then if f ′(ζ) mod p 6= 0 then let count = count + 1 (ζ
has 1 unique lift);

Else let newf = f (ζ)
ps ; for i from 1 to q :

newf = newf +
f i (ζ)

i ! · ps−i
· x i

Let count = count + ps−1 · countk(newf , p, k − s)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 10 / 15

The Algorithm

Example

Consider f (x) = x2 − 4x + 226 in Z/(74)

f (x) = x2 − 4x + 226
mod 7 = x2 + 3x + 2 = (x + 1)(x + 2)→ ζ = −1, ζ = −2

f (ζ + p · ε) = f (−1 + 7ε) = 49ε2 − 42ε+ 231 mod 74

Here, s = 1; we increment count by 1 and continue counting in
Z/(73)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 11 / 15

The Algorithm

Example

Consider f (x) = x2 − 4x + 226 in Z/(74)

f (x) = x2 − 4x + 226
mod 7 = x2 + 3x + 2 = (x + 1)(x + 2)→ ζ = −1, ζ = −2

f (ζ + p · ε) = f (−1 + 7ε) = 49ε2 − 42ε+ 231 mod 74

Here, s = 1; we increment count by 1 and continue counting in
Z/(73)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 11 / 15

The Algorithm

Example

Consider f (x) = x2 − 4x + 226 in Z/(74)

f (x) = x2 − 4x + 226
mod 7 = x2 + 3x + 2 = (x + 1)(x + 2)→ ζ = −1, ζ = −2

f (ζ + p · ε) = f (−1 + 7ε) = 49ε2 − 42ε+ 231 mod 74

Here, s = 1; we increment count by 1 and continue counting in
Z/(73)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 11 / 15

The Algorithm

Example

Consider f (x) = x2 − 4x + 226 in Z/(74)

f (x) = x2 − 4x + 226
mod 7 = x2 + 3x + 2 = (x + 1)(x + 2)→ ζ = −1, ζ = −2

f (ζ + p · ε) = f (−1 + 7ε) = 49ε2 − 42ε+ 231 mod 74

Here, s = 1; we increment count by 1 and continue counting in
Z/(73)

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 11 / 15

The Algorithm

Advantages

The main benefit of using the randomized algorithm is its efficiency.

For a polynomial with degree 84 in Z/(2113):

Brute Force: 92.19 seconds
Randomized Algorithm: 11.00 milliseconds

For a polynomial with degree 99 in Z/(10493):

Brute Force: 3.81 hours
Randomized Algorithm: 1000.00us

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 12 / 15

The Algorithm

Advantages

The main benefit of using the randomized algorithm is its efficiency.

For a polynomial with degree 84 in Z/(2113):

Brute Force: 92.19 seconds
Randomized Algorithm: 11.00 milliseconds

For a polynomial with degree 99 in Z/(10493):

Brute Force: 3.81 hours
Randomized Algorithm: 1000.00us

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 12 / 15

The Algorithm

Advantages

The main benefit of using the randomized algorithm is its efficiency.

For a polynomial with degree 84 in Z/(2113):

Brute Force: 92.19 seconds
Randomized Algorithm: 11.00 milliseconds

For a polynomial with degree 99 in Z/(10493):

Brute Force: 3.81 hours
Randomized Algorithm: 1000.00us

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 12 / 15

The Algorithm

Advantages

We can especially see the advantages of the randomized algorithm when
we introduce large primes.

For a polynomial with degree 76 in Z/(87133), the randomized
algorithm takes 2.00 ms.

For a polynomial with degree 93 in Z/(1047293), the randomized
algorithm takes 29.00 ms.

For a polynomial with degree 87 in Z/(1794246733), the randomized
algorithm takes 92.51 sec.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 13 / 15

The Algorithm

Advantages

We can especially see the advantages of the randomized algorithm when
we introduce large primes.

For a polynomial with degree 76 in Z/(87133), the randomized
algorithm takes 2.00 ms.

For a polynomial with degree 93 in Z/(1047293), the randomized
algorithm takes 29.00 ms.

For a polynomial with degree 87 in Z/(1794246733), the randomized
algorithm takes 92.51 sec.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 13 / 15

The Algorithm

Advantages

We can especially see the advantages of the randomized algorithm when
we introduce large primes.

For a polynomial with degree 76 in Z/(87133), the randomized
algorithm takes 2.00 ms.

For a polynomial with degree 93 in Z/(1047293), the randomized
algorithm takes 29.00 ms.

For a polynomial with degree 87 in Z/(1794246733), the randomized
algorithm takes 92.51 sec.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 13 / 15

The Algorithm

Advantages

We can especially see the advantages of the randomized algorithm when
we introduce large primes.

For a polynomial with degree 76 in Z/(87133), the randomized
algorithm takes 2.00 ms.

For a polynomial with degree 93 in Z/(1047293), the randomized
algorithm takes 29.00 ms.

For a polynomial with degree 87 in Z/(1794246733), the randomized
algorithm takes 92.51 sec.

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 13 / 15

The Algorithm

Analysis

Questions we want to know the answers to:

What time complexity does this algorithm have?

Can we can bound the maximum number of roots for any given
polynomial?

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 14 / 15

The Algorithm

Acknowledgements

NSF

J. Maurice Rojas

Yuyu Zhu

Leann Kopp

Natalie Randall (Department of Mathematics, Texas A&M UniversityDMS - 1757872Austin College)A Randomized Algorithm 16th July 2018 15 / 15

	The Algorithm

